UCSanDiego

Review

Typical Notation

Positivity, Self-Adjointness

$$
\left\{f(\cdot) \in C^{\infty}(\Omega):\left.f\right|_{\partial \Omega} \equiv 0\right\}
$$

$$
\begin{aligned}
\mathcal{L}[f] & :=-\Delta f \\
\langle f, g\rangle & :=\int_{\Omega} f(x) g(x) d x
\end{aligned}
$$

On board:
I. Positive: $\langle f, \mathcal{L}[f]\rangle \geq 0$
2. Self-adjoint: $\langle f, \mathcal{L}[g]\rangle=\langle\mathcal{L}[f], g\rangle$

Proof

Proof of 1

$\langle f, \mathscr{L}[f]\rangle=\int_{\Omega} f(-\nabla \cdot \nabla f) d V=\int_{\partial \Omega} f(-\nabla f \cdot \vec{n}) d S+\int_{\Omega} \nabla f \cdot \nabla f d V=\int_{\Omega} \nabla f \cdot \nabla f d V \geq 0$
where the second equality follows from Green formula, and the third equality follows from $\left.f\right|_{\partial \Omega} \equiv 0$

Proof of 2

$\langle f, \mathscr{L}[g]\rangle=\int_{\Omega} f(-\nabla \cdot \nabla g) d V=\int_{\partial \Omega} f(-\nabla g \cdot \vec{n}) d S+\int_{\Omega} \nabla f \cdot \nabla g d V=\int_{\Omega} \nabla f \cdot \nabla g d V$
where the second equality follows from Green formula, and the third equality follows from $\left.f\right|_{\partial \Omega} \equiv 0$
Similarly, $\langle\mathscr{L}[f], g\rangle=\int_{\Omega} \nabla g \cdot \nabla f d V$

It also shows $\langle f, \mathscr{L}[g]\rangle=\int_{\Omega} \nabla f \cdot \nabla g d V$

Laplacian(-Bertrami) Operator Diagonalizable!

Theorem. Let $\boldsymbol{H} \neq \mathbf{0}$ be an infinite-dimensional,

 separable Hilbert space and let $K \in L(H)$ be compact and self-adjoint. Then, there exists a countable orthonormal basis of \boldsymbol{H} consisting of eigenvectors of \boldsymbol{K}.

Hilbert space: Space with inner product
Separable: Admits countable, dense subset
Compact operator: Bounded sets to relatively compact sets
Self-adjoint: $\langle K v, w\rangle=\langle v, K w\rangle$

Eigenhomers

Dirichlet Energy

$$
E[f]:=\int_{\Omega}\langle\nabla f, \nabla f\rangle d A
$$

Proof

We use variational method to derive.
Lagrangian: $\quad \mathbb{L}[f]=\frac{1}{2} \int\langle\nabla f, \nabla f\rangle+\int_{\partial \Omega} \lambda(x)(f(x)-g(x))$
So
$\delta \mathbb{L}[f]=\mathbb{C}[f+\delta h]-\mathbb{L}[f]=\int_{\Omega}\langle\nabla f, \nabla \delta h\rangle+\int_{\partial \Omega} \lambda(x) \delta h(x)=\left\{\int_{\partial \Omega} \delta h(\nabla f \cdot \vec{n})-\int_{\Omega} \delta h(\nabla \cdot \nabla f)\right\}+\int_{\partial \Omega} \lambda(x) \delta h(x)$
In the interior of $\Omega, \Delta f \equiv 0$ so that $\delta \mathbb{\square}[f]=0$ for any δh
Note: in the derivation we ignored the second-order infinitesimal term $\mathrm{O}\left(\|\delta h\|^{2}\right)$

UCSanDiego

CSE291-C00 Discrete Laplacian \& Its Applications

Instructor: Hao Su

UCSanDiego

Discrete Laplacian

Our Focus

$f \in C^{\infty}(M) \longrightarrow \leadsto \Delta f \in C^{\infty}(M)$

The Laplacian

Recall: Planar Region

Wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\Delta u
$$

$$
\Delta:=\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

Discretizing the Laplacian

Problem

Laplacian is a differential operator!

A Principled Approach to Connect Continuous \& Discrete Objects

First-order Galerkin

Finite element method (FEM)

Integration by Parts to the Rescue

$\int_{\Omega} f \Delta g d A=$ boundary terms $-\int_{\Omega} \nabla f \cdot \nabla g d A$

a GUIDE to
INTEGRATION BY PARTS:
GIVEN A PROBLEM OF THE FORM:

$$
\int f(x) g(x) d x=?
$$

CHOOSE VARIABLES U AND V SUCH THAT:

$$
\begin{aligned}
u & =f(x) \\
d v & =g(x) d x
\end{aligned}
$$

NOW THE ORIGINAL EXPRESSION BECONES:

$$
\int u d v=?
$$

WHICH DEFINITELY LOOKS EASIER. ANYWAY, I GOTTA RUN. BUT GOOD LWCK!

Slightly Easier?

$\int_{\Omega} f \Delta g d A=$ boundary terms $-\int_{\Omega} \nabla f \cdot \nabla g d A$
Laplacian
(second derivative)

Slightly Easier?

$\int_{\Omega} f \Delta g d A=$ boundary terms $-\int_{\Omega} \nabla f \cdot \nabla g d A$

Kinda-sorta cancels out?

Overview:Galerkin FEM Approach

$$
\begin{aligned}
& g=\Delta f \\
\Longrightarrow & \int \psi g d A=\int \psi \Delta f d A=-\int(\nabla \psi \cdot \nabla f) d A
\end{aligned}
$$

L2 Dual of a Function

Function $f: M \rightarrow \mathbb{R}$
\downarrow
$\mathcal{L}_{f}: L^{2}(M) \rightarrow \mathbb{R}$
$\mathcal{L}_{f}[g]:=\int_{M} f(x) g(x) d A$
"Test function"

Observation

Can recover function from dual

Dual of Laplacian

$$
\begin{aligned}
\{g & \left.\in L^{\substack{\text { Space of test functions: }}}(M):\left.g\right|_{\partial M} \equiv 0\right\} \\
\mathcal{L}_{\Delta f}[g] & =\int_{M} g \Delta f d A \\
& =-\int_{M} \nabla g \cdot \nabla f d A
\end{aligned}
$$

Use Laplacian without evaluating it!

Galerkin's Approach

Choose one of each:
-Function space
-Test functions
Often the same!

One Derivative is Enough

$$
\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g \cdot \nabla f d A
$$

Representing Functions

What Do We Need

What Do We Need

What Do We Need

$$
\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g, \nabla f d A
$$

What Do We Need

Sum scalars per face multiplied by face areas

Gradient of a Hat Function

Gradient of a Hat Function

Gradient of a Hat Function

$$
\underbrace{f\left(v_{1}\right)=1}_{f\left(v_{2}\right)=0}
$$

Gradient of a Hat Function

What We Actually Need

$$
\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g \cdot \nabla f d A
$$

What We Actually Need

$$
\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g \cdot \nabla f d A
$$

Case I: Same vertex

$$
\begin{aligned}
\int_{T}\langle\nabla f, \nabla f\rangle d A & =A\|\nabla f\| 2 \\
& =\frac{A}{h^{2}}=\frac{b}{2 h} \\
& =\frac{1}{2}(\cot \alpha+\cot \beta)
\end{aligned}
$$

What We Actually Need

$\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g \cdot \nabla f d A$

Case 2: Different vertices

$$
\begin{aligned}
\int_{T}\left\langle\nabla f_{\alpha}, \nabla f_{\beta}\right\rangle d A & =A\left\langle\nabla f_{\alpha}, \nabla f_{\beta}\right\rangle \\
& =\frac{1}{4 A}\left\langle e_{31}^{\perp}, e_{12}^{\perp}\right\rangle=-\frac{\ell_{1} \ell_{2} \cos \theta}{4 A} \\
& =\frac{-h^{2} \cos \theta}{4 A \sin \alpha \sin \beta}=\frac{-h \cos \theta}{2 b \sin \alpha \sin \beta} \\
& =-\frac{\cos \theta}{2 \sin (\alpha+\beta)}=-\frac{1}{2} \cot \theta
\end{aligned}
$$

Summing Around a Vertex

$$
\left\langle\nabla h_{p}, \nabla h_{p}\right\rangle=\frac{1}{2} \sum_{i}\left(\cot \alpha_{i}+\cot \beta_{i}\right)
$$

$$
\left\langle\nabla h_{p}, \nabla h_{q}\right\rangle=\frac{1}{2}\left(\cot \theta_{1}+\cot \theta_{2}\right)
$$

THE COTANGENT LAPLACIAN

$L_{i j}= \begin{cases}\frac{1}{2} \sum_{i \sim k}\left(\cot \alpha_{i k}+\cot \beta_{i k}\right) & \text { if } i=j \\ -\frac{1}{2}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right) & \text { if } i \sim j \\ 0 & \text { otherwise }\end{cases}$

Poisson Equation

$\Delta f=g$

Eigenhomers

Point Cloud Laplace: Easiest Option

$$
\begin{aligned}
W_{i j} & =\exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{t}\right) \\
D_{i i} & =\sum_{j} W_{j i} \\
L & =D-W \\
L f & =\lambda D f
\end{aligned}
$$

"Laplacian Eigenmaps for Dimensionality Reduction and Data Representation"

UCSanDiego

Applications of Laplacian:
Intrinsic Shape Descriptor

Why Study the Laplacian?

- Encodes intrinsic geometry

Edge lengths on triangle mesh, Riemannian metric on manifold

- Multi-scale

Filter based on frequency

- Geometry through linear algebra Linear/eigenvalue problems, sparse positive definite matrices
- Connection to physics

Heat equation, wave equation, vibration, ...

Example Task: Shape Descriptors

Pointwise quantity

Isometry Invariance: Hope

Descriptor Tasks

- Characterize local geometry Feature/anomaly detection
- Describe point's role on surface Symmetry detection, correspondence

Descriptors We've Seen Before

Gaussian and mean curvature

Desirable Properties

- Distinguishing

Provides useful information about a point

- Stable

Numerically and geometrically

- Intrinsic

No dependence on embedding
Sometimes
undesirable!

Intrinsic Descriptors

Invariant under

- Rigid motion
- Bending without stretching

Intrinsic Descriptor

Theorema Egregium ("Totally Awesome Theorem"):
Gaussian curvature is intrinsic.

Gaussian curvature

End of the Story?

$$
K=\kappa_{1} \kappa_{2}
$$

Second derivative quantity

End of the Story?

http://www.integrityware.com/images/MerceedesGaussianCurvature.jpg
Non-unique

Desirable Properties

Incorporates neighborhood information in an intrinsic fashion

Stable under small deformation

Recall: Connection to Physics

Intrinsic Observation

Heat diffusion patterns are not affected if you bend a surface.

Global Point Signature

"Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation" Rustamov, SGP 2007

Global Point Signature

$$
\begin{gathered}
\text { l } \\
(p):=\left(-\frac{1}{\sqrt{\lambda_{1}}} \phi_{1}(p),-\frac{1}{\sqrt{\lambda_{2}}} \phi_{2}(p),-\frac{1}{\sqrt{\lambda_{3}}} \phi_{3}(p), \cdots\right)
\end{gathered}
$$

If surface does not self-intersect, neither does the GPS embedding.

Proof: Laplacian eigenfunctions span ; if GPS(p)=GPS(q), then all functions on would be equal at p and q.

Global Point Signature

GPS is isometry-invariant.

Proof: Comes from the Laplacian.

Recall: Connection to Physics

Heat Kernel Map

How much heat diffuses from p to x in time t ?

One Point Isometric Matching with the Heat Kernel
Ovsjanikov et al. 2010

Heat Kernel Map

$$
\operatorname{HKM}_{p}(x, t):=k_{t}(p, x)
$$

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel

