

Review

Typical Notation

http://www.gamasutra.com/db_area/images/feature/4164/figy.png, https://en.wikipedia.org/wiki/Gradient

Positivity, Self-Adjointness

$$\{f(\cdot) \in C^{\infty}(\Omega) : f|_{\partial \Omega} \equiv 0\}$$
 "Dirichlet boundary conditions"

$$\mathcal{L}[f] := -\Delta f$$
$$\langle f, g \rangle := \int_{\Omega} f(x)g(x) \, dx$$

On board: I. Positive: $\langle f, \mathcal{L}[f] \rangle \geq 0$

2. Self-adjoint: $\langle f, \mathcal{L}[g]
angle = \langle \mathcal{L}[f], g
angle$

Proof

Proof of 1
$$\langle f, \mathscr{L}[f] \rangle = \int_{\Omega} f(-\nabla \cdot \nabla f) \, dV = \int_{\partial \Omega} f(-\nabla f \cdot \overrightarrow{n}) \, dS + \int_{\Omega} \nabla f \cdot \nabla f \, dV = \int_{\Omega} \nabla f \cdot \nabla f \, dV \ge 0$$

where the second equality follows from Green formula, and the third equality follows from $f|_{\partial\Omega} \equiv 0$

Proof of 2

$$\langle f, \mathscr{L}[g] \rangle = \int_{\Omega} f(-\nabla \cdot \nabla g) \, dV = \int_{\partial \Omega} f(-\nabla g \cdot \vec{n}) \, dS + \int_{\Omega} \nabla f \cdot \nabla g \, dV = \int_{\Omega} \nabla f \cdot \nabla g \, dV$$

where the second equality follows from Green formula, and the third equality follows
from $f|_{\partial \Omega} \equiv 0$
Similarly, $\langle \mathscr{L}[f], g \rangle = \int_{\Omega} \nabla g \cdot \nabla f \, dV$

It also shows
$$\langle f, \mathscr{L}[g] \rangle = \int_{\Omega} \nabla f \cdot \nabla g \, dV$$

Laplacian(-Bertrami) Operator Diagonalizable!

Theorem. Let $H \neq 0$ be an infinite-dimensional, separable Hilbert space and let $K \in L(H)$ be compact and self-adjoint. Then, there exists a countable orthonormal basis of H consisting of eigenvectors of K.

Hilbert space: Space with inner product Separable: Admits countable, dense subset Compact operator: Bounded sets to relatively compact sets Self-adjoint: $\langle Kv, w \rangle = \langle v, Kw \rangle$

https://www.math.ku.edu/~matjohn/Teaching/S16/Math951/HilbertSchmidt.pdf

Eigenhomers

What is smallest eigenvalue?

Dirichlet Energy

Images made by E.Vouga

Proof

We use variational method to derive.

Lagrangian:
$$\mathbb{L}[f] = \frac{1}{2} \int \langle \nabla f, \nabla f \rangle + \int_{\partial \Omega} \lambda(x)(f(x) - g(x))$$

So

$$\delta \mathbb{L}[f] = \mathbb{L}[f + \delta h] - \mathbb{L}[f] = \int_{\Omega} \langle \nabla f, \nabla \delta h \rangle + \int_{\partial \Omega} \lambda(x) \delta h(x) = \{ \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla \cdot \nabla f) \} + \int_{\partial \Omega} \lambda(x) \delta h(x) = \{ \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla \cdot \nabla f) \} + \int_{\partial \Omega} \lambda(x) \delta h(x) = \{ \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) \} + \int_{\partial \Omega} \delta h(x) \delta h(x) = \{ \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) \} + \int_{\partial \Omega} \delta h(x) \delta h(x) = \{ \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) \} + \int_{\partial \Omega} \delta h(x) \delta h(x) = \{ \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) \} + \int_{\partial \Omega} \delta h(x) \delta h(x) \delta h(x) = \{ \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) \} + \int_{\partial \Omega} \delta h(x) \delta h(x) \delta h(x) = \{ \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) \} + \int_{\partial \Omega} \delta h(x) \delta h(x) \delta h(x) \delta h(x) \delta h(x) = \{ \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) \} + \int_{\partial \Omega} \delta h(x) \delta h($$

In the interior of Ω , $\Delta f \equiv 0$ so that $\delta \mathbb{L}[f] = 0$ for any δh

Note: in the derivation we ignored the second-order infinitesimal term $O(\|\delta h\|^2)$

CSE291-C00 Discrete Laplacian & Its Applications

Instructor: Hao Su

Discrete Laplacian

Our Focus

$f \in C^{\infty}(M) \longrightarrow \Delta f \in C^{\infty}(M)$

Computational version?

The Laplacian

Recall: Planar Region

Discretizing the Laplacian

Problem

Laplacian is a differential operator!

A Principled Approach to Connect Continuous & Discrete Objects

First-order Galerkin

Finite element method (FEM)

http://www.stressebook.com/wp-content/uploads/2014/08/Airbus_A320_k.jpg

Integration by Parts to the Rescue

Slightly Easier?

Slightly Easier?

Kinda-sorta cancels out?

Overview:Galerkin FEM Approach

$$g = \Delta f$$
$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = -\int (\nabla \psi \cdot \nabla f) \, dA$$

L2 Dual of a Function

Observation

Can recover function from dual

Dual of Laplacian

$$\{g \in L^{\infty}(M) : g|_{\partial M} \equiv 0\}$$

$$\mathcal{L}_{\Delta f}[g] = \int_{M} g \Delta f \, dA$$
$$= -\int_{M} \nabla g \cdot \nabla f \, dA$$

Use Laplacian without evaluating it!

Galerkin's Approach

Choose one of each:

Function space Test functions

Often the same!

One Derivative is Enough

Representing Functions

$$\|\nabla f\| = \frac{1}{\ell_3 \sin \theta_3} = \frac{1}{h}$$

$$\nabla f = \frac{e_{23}^{\perp}}{2A}$$

ength of e_{23} cancels
"base" in A

What We Actually Need

What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = -\int_{M} \nabla g \cdot \nabla f \, dA$$

$$\nabla f = \frac{e_{23}^{\perp}}{2A}$$

$$\int_{T} \langle \nabla f, \nabla f \rangle \, dA = A \| \nabla f \| 2$$

$$= \frac{A}{h^2} = \frac{b}{2h}$$

$$= \frac{1}{2} (\cot \alpha + \cot \beta)$$

What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = -\int_{M} \nabla g \cdot \nabla f \, dA$$

Case 2: Different vertices

$$\ell_2$$
 ℓ_1
 α
 β

$$\langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle \, dA = A \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle$$
$$= \frac{1}{4A} \langle e_{31}^{\perp}, e_{12}^{\perp} \rangle = -\frac{\ell_1 \ell_2 \cos \theta}{4A}$$
$$= \frac{-h^2 \cos \theta}{4A \sin \alpha \sin \beta} = \frac{-h \cos \theta}{2b \sin \alpha \sin \beta}$$
$$= -\frac{\cos \theta}{2 \sin(\alpha + \beta)} = -\frac{1}{2} \cot \theta$$

Summing Around a Vertex

$$p \qquad \beta_i \\ \alpha_i \\ \alpha_i \\ \langle \nabla h_p, \nabla h_p \rangle = \frac{1}{2} \sum_i (\cot \alpha_i + \cot \beta_i)$$

The Cotangent Laplacian

$$L_{ij} = \begin{cases} \frac{1}{2} \sum_{i \sim k} (\cot \alpha_{ik} + \cot \beta_{ik}) & \text{if } i = j \\ -\frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases}$$

Poisson Equation

$\Delta f = g$

Eigenhomers

Point Cloud Laplace: Easiest Option

$$W_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{t}\right)$$
$$D_{ii} = \sum_j W_{ji}$$
$$L = D - W$$
$$Lf = \lambda Df$$

"Laplacian Eigenmaps for Dimensionality Reduction and Data Representation" Belkin & Niyogi 2003

Applications of Laplacian: Intrinsic Shape Descriptor

Why Study the Laplacian?

• Encodes intrinsic geometry

Edge lengths on triangle mesh, Riemannian metric on manifold

Multi-scale

Filter based on frequency

• Geometry through linear algebra

Linear/eigenvalue problems, sparse positive definite matrices

Connection to physics

Heat equation, wave equation, vibration, ...

Example Task: Shape Descriptors

http://liris.cnrs.fr/meshbenchmark/images/fig_attacks.jpg

Pointwise quantity

Isometry Invariance: Hope

Descriptor Tasks

Characterize local geometry
 Feature/anomaly detection

• Describe point's role on surface

Symmetry detection, correspondence

Descriptors We've Seen Before

 $K := \kappa_1 \kappa_2 = \det \mathbf{I}$

http://www.sciencedirect.com/science/article/pii/S0010448510001983

Gaussian and mean curvature

Desirable Properties

Distinguishing Provides useful information about a point

• Stable Numerically and geometrically

• Intrinsic

No dependence on embedding

Sometimes undesirable!

Intrinsic Descriptors

Invariant under

- Rigid motion
- Bending without stretching

Intrinsic Descriptor

Theorema Egregium ("Totally Awesome Theorem"): Gaussian curvature is intrinsic.

 $K := \kappa_1 \kappa_2 = \det \mathbb{I}$

http://www.sciencedirect.com/science/article/pii/S0010448510001983

Gaussian curvature

End of the Story?

$K = \kappa_1 \kappa_2$

Second derivative quantity

End of the Story?

Non-unique

http://www.integrityware.com/images/MerceedesGaussianCurvature.jpg

Desirable Properties

Incorporates neighborhood information in an intrinsic fashion

Stable under small deformation

Recall: Connection to Physics

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

Heat equation

Intrinsic Observation

Heat diffusion patterns are not affected if you bend a surface.

Global Point Signature

 $GPS(p) := \left(-\frac{1}{\sqrt{\lambda_1}}\phi_1(p), -\frac{1}{\sqrt{\lambda_2}}\phi_2(p), -\frac{1}{\sqrt{\lambda_3}}\phi_3(p), \cdots\right)$

"Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation" Rustamov, SGP 2007

Global Point Signature

If surface does not self-intersect, neither does the GPS embedding.

Proof: Laplacian eigenfunctions span; if GPS(p)=GPS(q), then all functions on would be equal at p and q.

Global Point Signature

GPS is isometry-invariant.

Proof: Comes from the Laplacian.

Recall: Connection to Physics

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

Heat equation

Heat Kernel Map

How much heat diffuses from p to x in time t?

One Point Isometric Matching with the Heat Kernel Ovsjanikov et al. 2010

Heat Kernel Map

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel Ovsjanikov et al. 2010