Length Shortening Flow

e The objective for length shortening ot o) L ;
flow is simply the total length of the ength(7y) := /() 3571 ds
curve; the flow is then the (L2)

d
v = —V,length
eradient flow. at Vlength(7)

e For closed curves, several interesting o
. — ';-" "//_ff.seéj"
features (Gage-Grayson-Hamilton): o &
* Center of mass is preserved prc ax — il
", : p . 5\\3‘5\\5\\ ~ l‘\';)
e Curves flow to “round points —
p ST

e Embedded curves remain embedded
credit: Sigurd Angenent



Length Shortening Flow

Let length(-y) denote the total length of a regular plane curve v : [0, L] — RR?,
and consider a variation # : [0, L] — IR* vanishing at endpoints. One can then
show that

4| _olength(y + ) = — /O (n(s), k(s)N(s)) ds

Key idea: quickest way to reduce length is to move in the direction xN.



Length Shortening Flow — Forward Euler

e At each moment in time, move iy(s t) — —K(S t)N(s t)
: : : : dt / / /
curve in normal direction with
speed proportional to curvature yit — o o
— —x:N:
*“Smooths out” curve (e.g., noise), T C

eventually becoming circular

*Discretize by replacing time
derivative with difference in time;
smooth curvature with one (of
many) curvatures

e Repeatedly add a little bit of kN
(“forward Euler method”)




Elastic Flow

*Basic idea: rather than shrinking
length, try to reduce bending
(curvature)

e Objective is integral of squared
curvature; elastic flow is then
gradient flow on this objective

e Minimizers are called elastic curoves

e More interesting w/ constraints
(e.g., endpoint positions & a
tangents)



Isometric Elastic Flow

e Different way to smooth out a curve
is to directly “shrink” curvature

*Discrete case: “scale down” turning
angles, then use the fundamental
theorem of discrete plane curves to
reconstruct

e Extremely stable numerically;
exactly preserves edge lengths

e Challenge: how do we make sure 2 7
P -

closed curves remain closed?

From Crane et al, “Robust Fairing via Conformal Curvature Flow”



Elastic Rods

e For space curve, can also try to
minimize both curvature and
torsion Y
h 1

e Both in some sense measure
“non-straightness” of curve

e Provides rich model of elastic -,
rods N

[ ots of interesting applications

From Bergou et al, “Discrete Elastic Rods”

(simulating hair, laying cable, ...)
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Robust Fairing via Conformal Curvature Flow

Keenan Crane Ulnch Pnkall Peter Schreder
Caltech TU Berlin Caltech

Akstract

We present a formulation of Wilmere dow fer tdangulated ser-
faces that permi's extraordinarily liege time steps and saturaly
preserves the quality of the input mesh. The main hsight is
tha: Willnors becomes remarkably sable when expressed
In cusvatsre spece = we develop the precse caxliioss sndes
which cusrvature is allewed te evolve. The paactical outcome ic
a hghly efficient algorithm that naturally oreserses texturs and
does not require remethieg during the flow. We apply this algo-
rithm to surface fairing, peometric madelng ard conttriction
Of CONSTAM MEean Curvaiure (LML) suIfaces, vwe alwo peesem a
ncw algorithm fer length-prescrving Aow o phiner carves, which
prewides a valuahle analogy far the surace case.

CRCaregories: 135 Computer Grapaies]: Comparatonal Ge-
omeatry ard Object Modeling—Gaometric dgorithms, languages,
ANK syitems

Keywords:  digital geometry processing. dscrete differential
geane:ry, geomietric modeling, surface fairing, shape speoes, con-
formal goaneu), quasianiom, spdn geonesy

Links: DL ®pop

1 Introduction

A e ot baxc Jevel, o curvmure flow poduses woxsivey
tmeoother aporadimationg of 2 given plece of geormtry (cg., 2
ruree ar surface), by redusing a faining energy. Sack flows hame
farqangirg ipplicaions in fair surface design, inpainting, de-
noiting, axd biokgizal modeling [Helfrich 1973; Carhan 1970);
they are édso the contral ¢bject in mathemancal problems suh
13 the Willmere conjecure [Finkall and Sterling 1967].

Numesical methads for curvaiure fow sufler rom two priacigal
difficu'ties: (1) a severe time step restriction, which often vields
unicoeptably siow evalution and (11) degenesation Xf raed ele-
mencs, which necessitaes requen remeshing or other cormectine
dendoes. Ne ciramvent thewe ksuss by (1) using a curvature
based ‘epresentation of peometny. and (111 working with confor
ma trinsformations, which natually peeserve the aspec: ratio of
trisngles. The resulting algorithm stably integrates time steps or-
dens of magnrude lirger than exiszirg methods (Figure 1), resyir-
ing in mwbcantialy fastzr mal wakd peformance (Soction 6.4.2).

4609
Adad

Figuc L Adctuilad fiug Tuws (o w vand spilere e ondy doee Lirge,
explicit dme steps (rop). Meanwhile, ‘he quality of the enangule-
ron (hettom) i almest perfeerly poesorwnd

The success of oar method results from 3 judidously chesen
caange of wrichle:: lastead of postions, we work with a quancisy
called mean curvanwre Aalfdersice. Not surpesingly, curvamure.
based energles become casier v minimizs when working directly
with curvature itielfl However, we must sow understand the
precse neegredility conditi>as under which curvature variables
remain valid, Le., when ca carvatuee e integraved to recover
posthon? Karrberovet el [1978] and later Crane etal. (2011)
lavatigate this quextion for wpclogica spheres; we complote
the picenre by retahliching pemianxly nnenown inmgrahility can.
ditions for surfaces of arbirary typclogical type. In this piper
we focus can curvature flow, providng a dro>in replacenem
ter spplicadiors invoiving surtice falzing and varitional sutace
el = i partodar we slow how w capres Willimese low
via greadicnt descent on o gaadratic energy mbjee to simple lin
ear conurrminee. These Iasights are net spectic ro cunanure low,
boweve, and can be spplied to 00 i lica-
tion where prmmt?rfof the t:nvusr «wmi’f&f’

2 Preliminaries

Ve wlux iwu exoesiial cosvantias s Srene e ol [2€11),
irst, we isterpret any suracs in R® (e g, o wiangls moak) as
the imsge of + conformal ‘mmeniar (Section 2211 Seenad,
we intespres three-dineasional vecto's s inagnay quarernions
(Secior 23). Pmofs in thr appendix make wse of cusernion-
vilued differential forms; Interesed readers may bene’¥t fom
the matecial in [Rambewov 2t al, 2002, Grace 2013).

Hgure 2 Our fiow gracgully preserves the oppearance of textur:
throxghout all stages vf the Tow

e Readings from papers on curve algorithms (will be posted online)

Discrele Elastic Rods
Miklés Bergou Max Wardetzky Stephen Robirsoa Basile Audoy Eitan Geinspun
Colunibia Univenity Freis Universitit Berlin Celunibia Univessity CNRS/ UPML Usiv Parks 06 Columbia Universty

Figure 1@ Fxperiment and smaldation: A simpls (Fefell) knat tied on an elagic rope can he turred intn 2 nussher of fmciasting dhanes
when twisted Suarting with a twist-free koot (leff, we cbserve boh continuous and dscontisuoas change: in the shape, for both directivas
of wig. Usizg cur model of Discrese Elastic Rodt, we are able 10 repeodece experiments with high accuraey.

Abstract

We presemt a discrae reament of sdadted framed curves, pasal-
lel eraasport, and holonoary, thus eitablisting the linguag: foe 8
discretz grometac model of thin Heable rods wih aburary cooss
sociior s wdslonme) cenligurstion, Ow: approech Jilfess foom
exiting smulation techniques ir the gaphics and neciamicx lit-
eraure bath in e tinematic description—we regeesent the mate-
rial frame by its angala: deviatios from the satural Bichoo frame—
as well & in the dynamnical treatment-—we treat the cestedine as
dyramic and the mateial Irame as Quasisat. Additienaly, we
Joscribe ¢ mausifold gnogectios setbod fos vospliag rods (o tigide
bodies and simukansously enforcing rod imextensidility. The use of
Quasistatics and comtrants paovides anefficieat treatmeat for stifi
twisting and stretching modes; #t the same tire, we retain the dy-
nank bending cf the centerline ind accurately rexroduce the cou-
plag tetweea bending andtwisting nodes. We valdale e discrele
rodd medsl vim quantisative beckling, swablity. and couplec-made
expeniments, xnd via gualitative knol-tying ronpanisces.

CRCamperien: 13.7 [Comguter Graphics} Three-Dinessions] Crapaicy
and Reshsn—Animaton

Kerwords rods itrasds. disarese holonsmy discrete di Yerential grometry

1 Introduction

Recen! aciivity 11 the field of discrets differential geometry |DDG)
has tucled the developmen. of sampie, rcbust, ind elhoaert teols foe
poumsiy prvening and jhipicd simustion, The DOQ sgpronch
to simlation begins with the aying out of 1 phyxical model that i
discrets from the groand oy e prinary directve in designing this
model is a focus on he deeservation of key geometric trustures that
characerize the sctial 'smooth) phiyiical system [Grinspan 2006),

Noably heking is the appliomion of DDG 1o physival modeling
of dasic rods—carve-like elastic bedies that have ;e dimension
(“lengh™) mnch karger haa the others (“crois-secton”), Rods have
many interesting potential spglications in aaimatirg knots, sutures,
plants, and cven kunematic steltons.  They are deal tx model-
g deformations charscwcrioald by sacichiag, bouling, axl owis-
ing Sret:hiag and bendiag are captured by the deformmtion of a
curve callzd Be cenveriine, whik twisting s captured by the rota-
ton of a material freme asiociated o exch poist 0 the centerlize.

1.1 Goals and contributorns

Owr geal is to develop 1 principled model that is 1a) dmple to m-
plenent and fficiest © eaecite and (b) casy to vabdatz axd est
for corvergerce, in the sense tha: sclutions 10 stavic doblens and
trapctencs 0! dynanss probloms 1n he discrete setup approach the
silstivas of e coresponding ssoeth protlen, In punuiy this
goal, thix sager sdvancee cur andercanding of discrele Efferential
geemexy, physical modeling, ané physical simulaior.

Elogant model of elistic rods  We bulld oo a epeeseatation
of elastic rods 1trosaced [or purposes of anaysis by Langer and
Simge:r (1996, wrivoag st 3 rodwced covrdisce formsbston wids o
minimul memser of degreer of fresdem Sor extenuidle rodk that rep-
resents the centerdine of the red explicitly axd represents the mate-
rial frame wsing only a scalar vaciatle (84.2), Like echer reduced
coardinate models, this avoids tie need for «&iff constraints
couple the matenal frame 10 he certeriine, yet unibe ather (eg.,
cusvaturebased) reduced wondivate meodels, the eapd cit ceateckoe
representation facilvates collision handing anc resdening.

Eff clent quasistatic treatment of matericl frame  We addition-
ally emphasiae that Be spead of sound in elastic rods & much faster
for twistiag wanes ‘han for tenamng wives, Whie this has leag
brocns catablished tothe best of ous nowledge it Tas oot bocn used
to cimalae genwral elistic rede, Since in most applicaticns the
slover waves are of interesl. ve real the mateial frane guasis'al-
icaly 155, When we sombise this assumatica vith our reduced
cocrdisate represenatixn, the resuling eqaatons of motion (87)
beoom: very straghtforwad © mplament and elECiant 1 eciecsie.

G try o' decrote framed curves and their sornections
RBecame cur dervation is based on the concepts of DIDG, cur dis.
cree model rctans very dstincly e geamernic stuctire of the
smooth settirg—in pacticula, that of panlk! tmmspoz and the
forees inducad ty Die variation of holcnory (56). We intodice

To appearin the ACM SIGGRAPH conference proceedings

Discrete Viscous Threads
Miclés Bergou Bisile Audoly Eteme Voaga Mac Wardewzky Eitzn Grinspun
Colambia Universiyy UPMC Usiv. Paris 05 & CNRS Colsmbia Uninersity Universitt Gotngen Colunbiz Usiversity
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Figure 1: A thin thread of vircous fuid is posred arto 3 worving bell. creating o dazding array of inricete paverns. Simulariors 1xing owr
madel reproduce this nch and complex behavwor. Tremskecent thread: expenment |Chiu-'Webster and Lister 2005]: pold threed: simsdation.

Absiract

We peeseat 3 contiusm-based Hiscret: model for thin theads of
viscols fwid by drawing upom the Maylkugh analdgy to elastc
ks, demvmirsing el coiliag, folding, sx) licakag io dy-
nanic cimulatione. Our desivatiors empbacizes space-ime -
metry, which sheds light om the roe of time-pamalls] ramport in
eliminating—wihout approx matioa—all >ut an Of2) band of er-
tries of the physcal system’s erergy Hessian The result is a fast,
unified, imphcit reatment of viscons treads and chstc mxds that
chkaely reprodoces 2 variay of fisclaming hysical pheromena, 1o
cluding hyssrct ¢ transiticns botaesn coiling regimes, conrpetition
hetwren aerbion brscicn nd grndty, sad fan fire semenical fisid.
mechanical sewing machine  The novel implicit restment also
yidds an order of magytude speedup in our elastic od dyramics

CR Catezories: 13,7 [Compuer Sriphics] Three-Dimensional
Graphics and Realiim—Animation

Keoywords:  vscous thezads, coiling. Ravlzigh anadegy chstic
rocs, hair simulation

1 Introduction

Acunous Mtle mystery of alteryocn 4 1 the foldivg, coding, and
meanadening of 1 thin taread of honey as it falls upon a frestly baked
sons, Understanding the motion of this viacoss ehresd s a gae-
way b dmelst on tocle shace ntility spang flnamraking paning,
ard engmeering: ‘or example. in over 3% of worldwice textile
manufacturing procesies, threads of viscous iquid polymers ioften
moorontirg reycled materiali) are entang ed to form monwoven
faoric wed In haty clapers, bandages, envelopes, upholitery, sir
("HEPA™) fllco, swgca gowns, Ligl-udliv capels, cosion cons
wrol, felt, frost prosection, and ten sachets [Andreassen o o, 19907),

Vscous threads display fascinating behavioss that are challeaging
to accurstely reproduce aita existing sinulstica txchniqies. For
eample. & viscous thread sicadily poired om0 & moving bek cre-
alzs ¢ sogueane Of “sewing osachise™ paticoes (sec Fig. 1 While
in theory, itis possible te acoumtely compute the moton of a vis

cous hread using 2 geneml. volemetric fluid sirculacor. there are 20
repors of sacoesses 1o date, perhaps bocaase the resolution noeded
for a sufficiently accurate reproduction xquires prohibitvely ex-
pensive rusimes.

In contreet 10 valumeric approsches, ve model vissous threads by
their fornal amalogy (0 clastic "ods. for which relatively inexpen-
sive computationsl tools are realdily available. Bath viscous threads
ard elasic mds are amenuble toa redued coord natz rodel oderst-
ing o1 acenterine curve decorated with a cross-secticnal material
Srame, Predicting G aarive of visvuws dscals icysine laking i
accoumt e competition botween external forces, surface teasion,
ard the macerial’s revistance to stedching, dending. and twisting
rates, Thus, with the excepton of surface teasicn, which tenzraly
pliys a negligible role for elastic materias, an existing implemen-
tatior of stratching, bending, and tvising for an elasn: red can be
casily repurposed for drmulising a Ascowr thead.




From Curves to Surfaces

* Previously: saw how to talk
about 1D curves (both smooth
and discrete)

* Today: will study 2D curved
surfaces (both smooth and
discrete)

e Some concepts remain the same
(e.., differential); others need to
be generalized (e.g., curvature)

¢ Still use exterior calculus as our
lingua franca

(Surfaces)



Surfaces — Local vs. Global View

>

*So far, we've only studied exterior 1/‘
calculus in R" \\‘/“
-«

e Will therefore be easiest to think of
surfaces expressed in terms of patches of j
the plane (local picture)

>

e Later, when we study topology &
smooth manifolds, we’ll be able to more
easily think about “whole surfaces” all at P

once (global picture)
* Global picture is much better model for @

discrete surfaces (meshes)...




Parameterized Surfaces



Parameterized Surface

A parameterized surface is a map from a two-dimensional region
U C R? into R*:

f:uU—R"

The set of points f(U) is called the image of the parameterization.



Parameterized Surface—Example

* As an example, we can express a saddle as a parameterized surface:

U:= {(u,v) € R*: u* +v* <1}

f:U—R% (u,0) — (u,0,u* —v*) f/’




Reparameterization

e Many different parameterized surfaces can have the same image:

U:= {(u,v) € R*: u* +v* <1}

f:U—R% (u,0) — (u+v,u—04uv) f/’
1

This “reparameterization symmetry”
can be a major challenge in
applications—e.g., trying to decide
if two parameterized surfaces (or
meshes) describe the same shape.

Analogy: graph isomorphism



Embedded Surface

e Roughly speaking, an embedded surface does not self-intersect

* More precisely, a parameterized surface is an embedding if itis a
continuous injective map, and has a continuous inverse on its image

RN

not embedded
N /
embedv&Y N




Differential of a Surface

Intuitively, the differential of a parameterized surface tells us how
tangent vectors on the domain get mapped to vectors in space:

B
x|

We say that df “pushes forward” vectors X into R”, yielding vectors dfiX)




Differential in Coordinates

In coordinates, the differential is simply the exterior derivative:
f:U— R (u,0) — (u,0,u” —v*)

df = afdu | afdv:

v f
(1,0,2u)du + (0,1, —2v)dv /

Pushforward of a vector field:

.__ 3/ 0 0
X’_é_l(ax 8]/)

df (X) = 2(1,-1,2(u +0))
E.g., at u=v=0: (Z,—%,O)




Differential — Matrix Representation (Jacobian)

Definition. Consider amap f : R" — R™, and let x¢, ..., x;; be coordinates on IR".
Then the Jacobian of f is the matrix

" aft/oxt - aft/ox" T
Jf = T /
Cafm/oxt --- af™/ox"

where f1,..., f™ are the components of f w.r.t. some coordinate system on R".
This matrix represents the differential in the sense that df (X) = JX.

(In solid mechanics, also known as the deformation gradient.)

Note: does not generalize to infinite dimensions! (E.g., maps between functions.)



Immersed Surface

e A parameterized surface fis an immersion if its differential is
nondegenerate, i.e., if dAX) =0 if and only if X =0.

immersion

E\\

Intuition: no region of the surface gets “pinched”



Immersion — Example

Consider the standard parameterization of the sphere:

f(u,v) := (cos(u) sin(v),sin(u) sin(v), cos(v))

afdul

if =

Q: Is f an immersion?
A: No: when v =0 we get

( 0, 0, 0 )du-+
( cos(u), sin(u), —sin(v) ) dv

Nonzero tangents mapped to zero!

0
TC

0

of . ( —sin(u)sin(v), cos(u)sin(v),
v dv = ( cos(u)cos(v), cos(v)sin(u),




Immersion vs. Embedding

e In practice, ensuring that a surface is

globally embedded can be challenging

e Immersions are typically “nice enough”
to define local quantities like tangents,
normals, metric, etc.

* Immersions are also a natural model for
the way we typically think about
meshes: most quantities (angles, lengths,
etc.) are perfectly well-defined, even if
there happen to be self-intersections

immersion

\

—
-

D

Y

I

/

embedding



Sphere Eversion

Turning a Sphere Inside-Out (1994)

A

https://youtu.be/-6g3ZcmjJ7k
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Riemann Metric

e Many quantities on manifolds (curves, surfaces,
etc.) ultimately boil down to measurements of

lengths and angles ot tangent vectors f ~i\
 This information is encoded by the so-called t , \
Riemannian metric™ . T,M P(%p (X, Y)

‘ X
o Abstractly: smoothly-varying positive-definite ."

bilinear form

e For immersed surface, can (and will!) describe
more concretely / geometrically

*Note: not the same as a point-to-point distance metric d(x,y)



Metric Induced by an Immersion

e Given an immersed surface f, how
should we measure inner product of
vectors X, Y on its domain U?

e We should not use the usual inner
product on the plane! (Why not?)

* Planar inner product tells us nothing
about actual length & angle on the
surface (and changes depending on
choice of parameterization!)

¢ Instead, use induced metric

§(X,Y) := (df (X),df(Y))

Key idea: must account for “stretching”



Induced Metric—Matrix Representation

e Metric is a bilinear map from a pair of vectors to a scalar, which we can
represent as a 2x2 matrix I called the first fundamental form:

¢(X,Y)=X"IY

_ Jd d \ _ 0 0
> L =g (5 an) = (4 (o) 4 (3) )
e Alternatively, can express first fundamental form via Jacobian:
g(X,Y) = (df(X),df (Y)) = (J;X) " (JpY) = X" (J§ J)Y

= 1=]; s




Induced Metric— Example

Can use the differential to obtain the induced metric:
f:u— R°: (u,v) — (u,v,uz —vz)

df =(1,0,2u)du + (0,1, —2v)dv

1 0 f/f
=] 0 1
2u —20 o
L= s
1+ 4u?  —4duv

—4yy 1+ 402 _




Conformal Coordinates

e As we've just seen, there can be a complicated

relationship between length & angle on the domain
(2D) and the image (3D)

e For curves, we simplified life by using an arc-length
or isometric parameterization: lengths on domain are
identical to lengths along curve

e For surfaces, usually not possible to preserve all
lengths (e.g., globe). Remarkably, however, can
always preserve angles (conformal)

e Equivalently, a parameterized surtace is conformal it
at each point the induced metric is simply a positive
rescaling of the 2D Euclidean metric




Example (Enneper Surface)

Consider the surface _

uo? +u— zu>
f(u,0) = | 3v(v*—3u*—3)
- (u—ov)(utov)
[ts Jacobian matrix is
C —ut vt 41 2UT )
Jr = —2UD —ut+ 0% —1
I 2U —20 )

[ts metric then works out to be just a scalar function
times the usual metric of the Euclidean plane:

(= Jf)y = (1@ +o2+1) (f:

1
0
- -1 1

This function is called the conformal scale factor. -1 1
conformal factor







Gauss Map

* A vector is normal to a surface if it
is orthogonal to all tangent vectors

e Q:Is there a unigue normal at a
given point?

e A:No! Can have different
magnitudes/ directions.

e The Gauss map is a continuous
map taking each point on the
surface to a unit normal vector

e Can visualize Gauss map as a map
from the surface to the unit sphere




Orientability

Not every surface admits a Gauss map (globally):

orientable nonorientable



Gauss Map— Example

Can obtain unit normal by taking the cross product of two tangents™:
f := (cos(u)sin(v),sin(u) sin(v), cos(v))

_ ( —Sin(u)sin(v), Cos(u) sin(v), 0 ) du +
df = ( cos(u)cos(v), cos(v)sin(u), —sin(v) ) dv

— cos(u) sin?(v)

df (2) x df(2) = | —sin(u)sin?(v)
— cos(v) sin(v)

To get unit normal, divide by length. In this case, can just
notice we have a constant multiple of the sphere itself:

= N = —f

“Must not be parallel!




Surjectivity of Gauss Map

e Given a unit vector u, can we always find some point on a surface that
has this normal? (N = u)

* Yes! Proof (Hilbert): N

/i &

Q: Is the Gauss map injective?



Vector Area

e Given a little patch of surface (), what's the “average normal”?
e Can simply integrate normal over the patch, divide by area:

1
area(()) /Q N dA

e Integrand N dA is called the vector area. (Vector-valued 2-form)

e Can be easily expressed via exterior calculus™
I NAF(X,Y) = dF(X) x df(Y) — dF(Y) x df (X) =
2df (X) x df (Y) =
2NdA(X,Y)

> | A = 3df Adf




Vector Area, continued

By expressing vector area this way, we make an interesting observation:
2 [ Naa= [ afndf= [ d(faf)= | fif = | fls) < df(T(s))d
A Cafndr = [ d(rdr) = [ paf = | £(s) x df(T(s)) ds

Hence, vector area is the same for any two patches w/ same boundary
Can define “normal” given only boundary (e.g., nonplanar polygon)

Corollary: inteqral of normal vanishes for any closed surface

d() ;\
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Curvature




Weingarten Map s

e The Weingarten map dN is the dN(f;O\ <
differential of the Gauss map N AN(X5)
SUNGS
e At each point, tells us the N : KX
change in the normal vector
along any given direction X <X2
e Since change in unit normal - 41

cannot have any component in
the normal direction, dN(X) is
always tangent to the surface

e Can also think of it as a vector
tangent to the unit sphere 52

Q: Why is dN(Y) “flipped”?



Weingarten Map — Example

e Recall that for the sphere, N = -f. Hence, Weingarten map dN is just -df :

f := (cos(u)sin(v),sin(u) sin(v), cos(v))

~ ( —sin(u)sin(v), cos(u)sin(v), 0
if = ( cos(u)cos(v), cos(v)sin(u), —sin(v)
~ ( sin(u)sin(v), —cos(u)sin(v), 0 )du
AN = (— cos(u)cos(v), —cos(v)sin(u), sin(v) ) dv

Key idea: computing the Weingarten map is no different
from computing the differential of a surface.




Normal Curvature

e For curves, curvature was the rate of change of the tangent; for immersed surfaces,
we'll instead consider how quickly the normal is changing.*

* In particular, normal curvature is rate at
which normal is bending along a given
tangent direction:

(df (X),dN(X))
df (X))

e Equivalent to intersecting surface with
normal-tangent plane and measuring the
usual curvature of a plane curve

KN(X) C =

*For plane curves, what would happen if we instead considered change in N?



Normal Curvature — Example

Consider a parameterized cylinder:

f(u,v) := (cos(u),sin(u),v)

if = (—sin(u), cos(1), 0)du + (0,0, 1)do 1
N = (—sin(u),cos(u),0) x (0,0,1)
= (cos(u),sin(u),0)
AN = (—sin(u),cos(u),0)du 0 T

5 (df(£),dN(L))  (—sin(u),cos(u),0)(— sin(u),cos(u),0)
KN(%) _ ‘df(%MZ - |(—sin(u),cos(u),0)]? =1

Jd\ __
KN(55) = - =0 Q: Does this result make sense geometrically?



Principal Curvature

e Among all directions X, there are two principal directions X;, X> where
normal curvature has minimum /maximum value (respectively)

e Corresponding normal curvatures are the principal curvatures

e Two critical facts™:

1. g(Xl,Xz) — ()

2. dN(X;) = x;df (X;)

Where do these relationships come from?



Shape Operator

e The change in the normal N is always tangent to the surface

e Must therefore be some linear map S from tangent vectors to tangent
vectors, called the shape operator, such that

df (SX) = dN(X)
e Principal directions are the eigenvectors of S

* Principal curvatures are eigenvalues of S

* Note: S 1s not a symmetric matrix! Hence, eigenvectors are not
orthogonal in R?; only orthogonal with respect to induced metric g.



Shape Operator —Example

Consider a nonstandard parameterization of the cylinder (sheared along z):

f(u,v) := (cos(u),sin(u), u + v) df = (—sin(u),cos(u),1)du + (0,0,1)dv
N = (cos(u),sin(u),0) dN = (—sin(u),cos(u),0)du
df oS =dN
- —sin(u) 0 | | - | —sin(u) 0
cos(u) 0 gll glz — cos(u) 0 df(XZ) JF(X ‘4
1 1 e 0 f(X1)
A‘

= S = _}8 = | Y — _1 A/'

.

K2:1

df (X1) = (0,0,1) K1 =0 L X X1
df (Xp) = (sin(u), — cos(u),0) ’ yf\

Key observation: principal directions orthogonal only in R3.




Umbilic Points

e Points where principal curvatures are equal are called umbilic points

e Principal directions are not uniquely determined here

e What happens to the shape operator 5?

e May still have full rank!

e Just have repeated eigenvalues, 2-dim. eigenspace

' ' 1
A K1 = Kp = — VX, SX:%X

> = 0 1/1”_ a

Could still of course choose (arbitrarily) an orthonormal pair Xj, Xo...



Principal Curvature Nets

e Walking along principal direction field yields principal curvature lines

e Collection of all such lines is called the principal curvature network




Separatrices and Spirals

e If we walk along a principal curvature line, where do we end up?

e Sometimes, a curvature line terminates at an umbilic point in both directions; these so-
called separatrices (can) split network into regular patches.

e Other times, we make a closed loop. More often, however, behavior is not so nice!




Application —Quad Remeshing

e Recent approach to meshing: construct net roughly aligned with
principal curvature—but with separatrices & loops, not spirals.

from Knoppel, Crane, Pinkall, Schréder, “Stripe Patterns on Surfaces”



Gaussian and Mean Curvature

Gaussian and mean curvature also fully describe local bending:

Gaussian K := k1>
mean* H := 5(x; + k)

K >0 “developable” K =0 K <0
H # 0 H+#0 “minimal” H = 0

*Warning: another common convention is to omit the factor of 1/2



Total Mean Curvature?

Theorem (Minkowski): for a regular closed embedded surface,

/ HdA > VarA
M

Q: When do we get equality?

A: For a sphere.




Second Fundamental Form

e Second fundamental form is
closely related to principal

curvature

e Can also be viewed as change in
first fundamental form under
motion in normal direction

e Why “fundamental?”First &
second fundamental forms play

role in important theorem. .. - df(X),dN(X) II(X,X)

N = TER T X X



Fundamental Theorem of Surfaces

e Fact. Two surfaces in R3 are congruent if and only if they have the same
first and second fundamental forms

* ...However, not every pair of bilinear forms I, Il on a domain U
describes a valid surface—must satisfy the Gauss Codazzi equations

e Analogous to fundamental theorem of plane curves: determined up to
rigid motion by curvature

e ...However, for closed curves not every curvature function is valid (e..,
must integrate to 2kr)
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