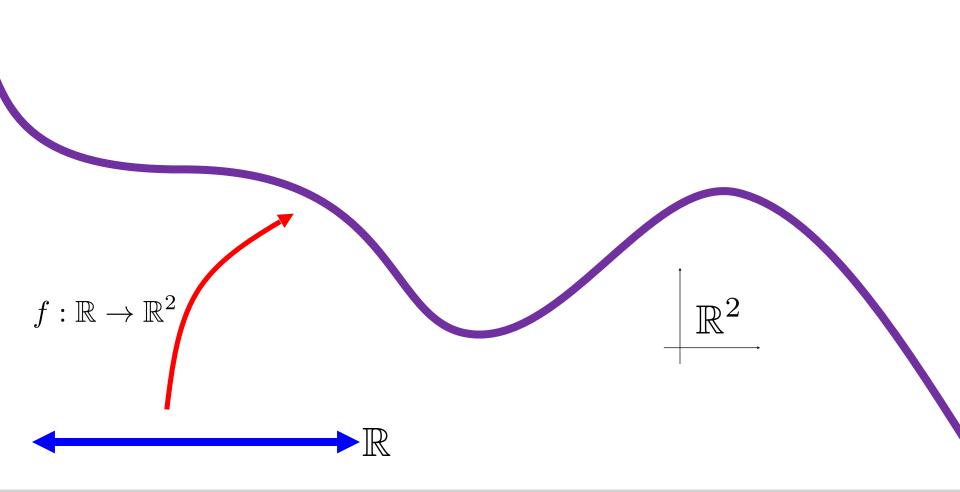


CSE291-C00 Curves: Continuous and Discrete

Instructor: Hao Su

Credit: Justin Solomon

Defining "Curve"

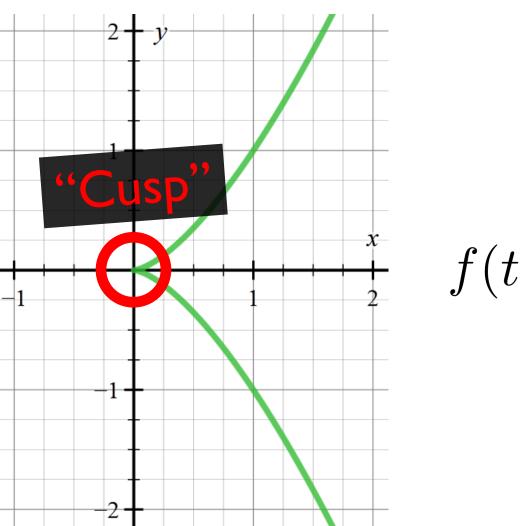


A function?

Subtlety

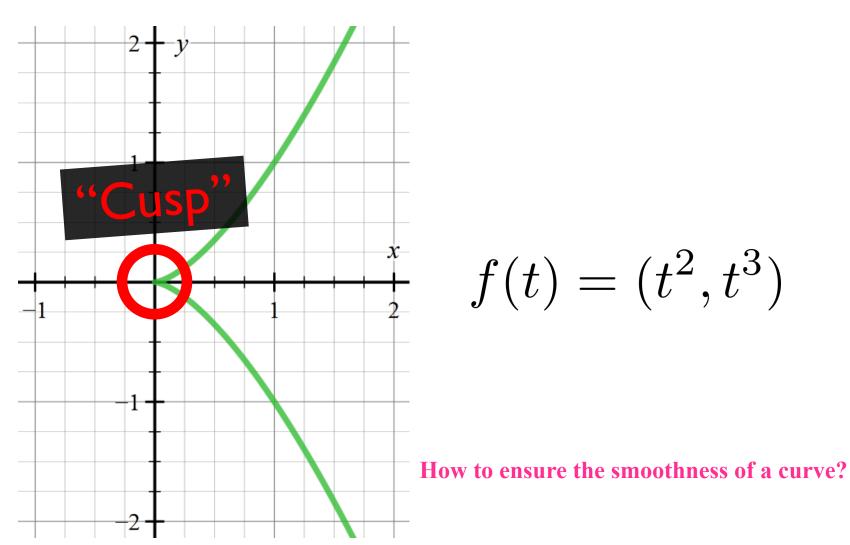
$\gamma_3(t) := (0,0)$

Graphs of Smooth Functions



$f(t) = (t^2, t^3)$

Graphs of Smooth Functions

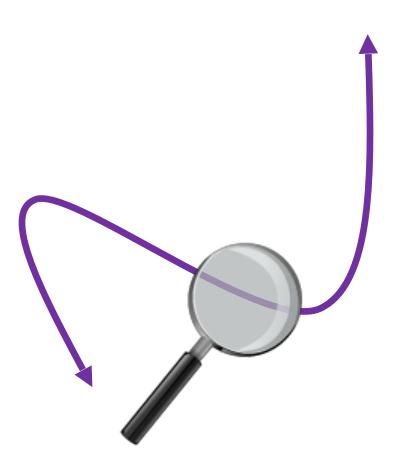


Geometry of a Curve

A curve is a set of points with certain properties.

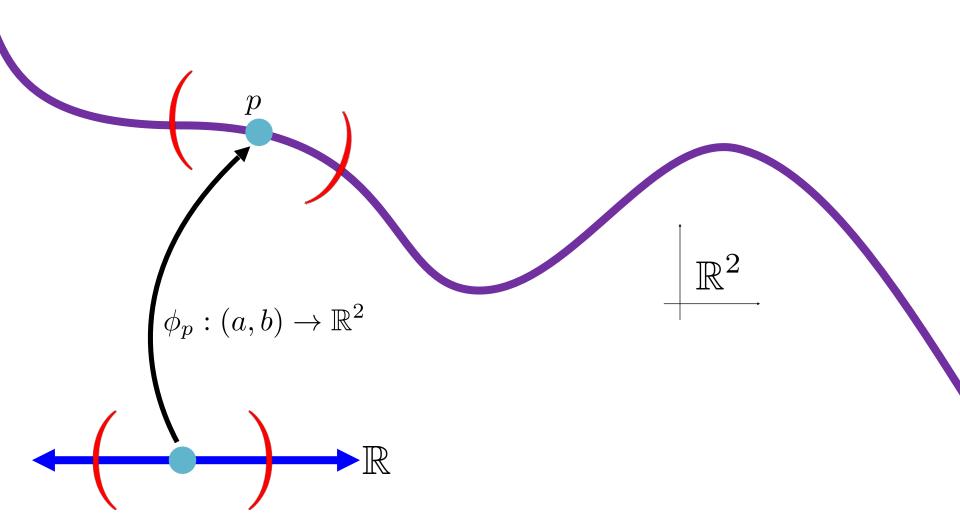
It is not a function.

Geometric Definition

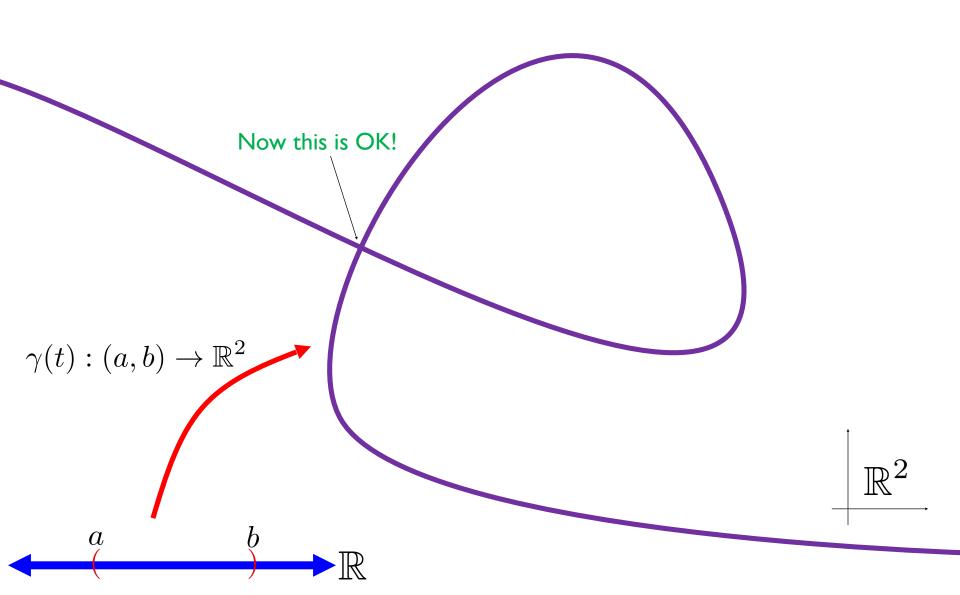


Set of points that locally looks like a line.

Differential Geometry Definition



Parameterized Curve



Some Vocabulary

• Trace of parameterized curve

$$\{\gamma(t): t \in (a,b)\}$$

Component functions

$$\gamma(t) = (x(t), y(t), z(t))$$

Change of Parameter

$\bar{t} \mapsto \gamma(g(\bar{t})) = \gamma \circ g(\bar{t})$

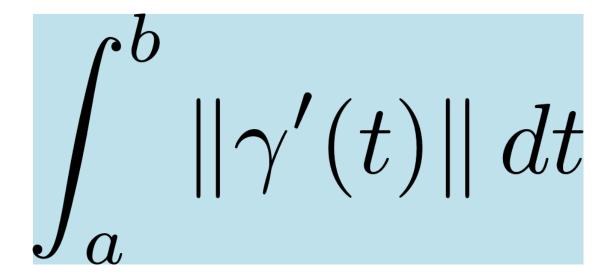
Geometric measurements should be invariant to changes of parameter.

Dependence of Velocity

$ilde{\gamma}(s) := \gamma(\phi(s))$

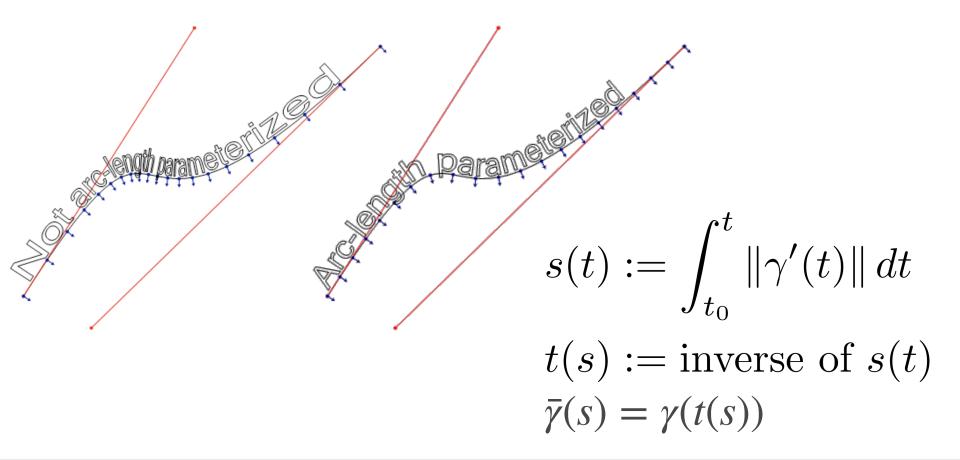
On the board: Effect on velocity and acceleration.

Arc Length



Parameterization by Arc Length

http://www.planetclegg.com/projects/WarpingTextToSplines.html



Constant-speed parameterization

Moving Frame in 2D

$$T(s) := \gamma'(s)$$

$$\implies \text{ (on board) } ||T(s)|| \equiv 1$$

$$N(s) := JT(s)$$

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$N(s) = JT(s)$$

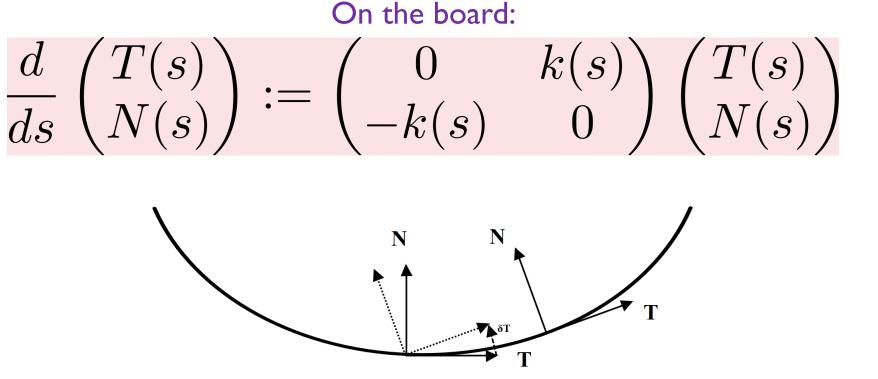
Philosophical Point

Differential geometry "should" be coordinate-invariant.

Referring to x and y is a hack! (but sometimes convenient...)

How do you characterize shape without coordinates?

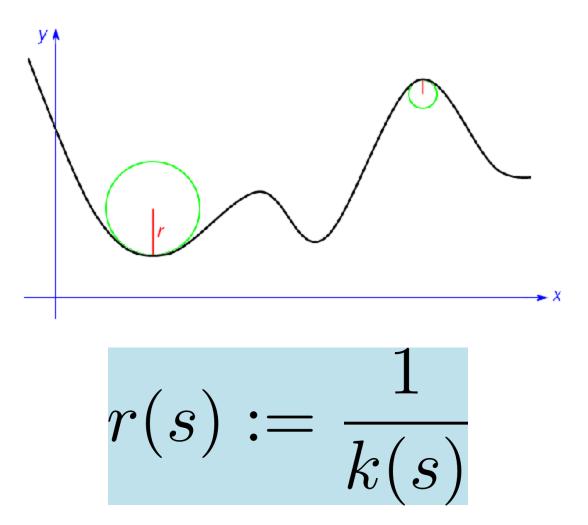
Turtles All The Way Down



https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas

Use coordinates from the curve to express its shape!

Radius of Curvature



https://www.quora.com/What-is-the-base-difference-between-radius-of-curvature-and-radius-of-gyration

Fundamental theorem of the local theory of plane curves:

k(s) characterizes a planar curve up to rigid motion.

Fundamental theorem of the local theory of plane curves:

k(s) characterizes a planar curve up to rigid motion.

Statement shorter than the name!

Frenet Frame: Curves in

- Binormal:
- Curvature: In-plane motion
- Torsion: Out-of-plane motion

$$\frac{d}{ds} \begin{pmatrix} T \\ N \\ B \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T \\ N \\ B \end{pmatrix}$$

Fundamental theorem of the local theory of space curves:

Curvature and torsion characterize a 3D curve up to rigid motion.

Aside: Generalized Frenet Frame

$$\gamma(s): \mathbb{R} \to \mathbb{R}^{n}$$

$$\stackrel{d}{\overset{d}{ds}} \begin{pmatrix} e_{1}(s) \\ e_{2}(s) \\ \vdots \\ e_{n}(s) \end{pmatrix} = \begin{pmatrix} 0 & \chi_{1}(s) & & 0 \\ -\chi_{1}(s) & \ddots & \ddots & \\ & \ddots & 0 & \chi_{n-1}(s) \\ 0 & & -\chi_{n-1}(s) & 0 \end{pmatrix} \begin{pmatrix} e_{1}(s) \\ e_{2}(s) \\ \vdots \\ e_{n}(s) \end{pmatrix}$$

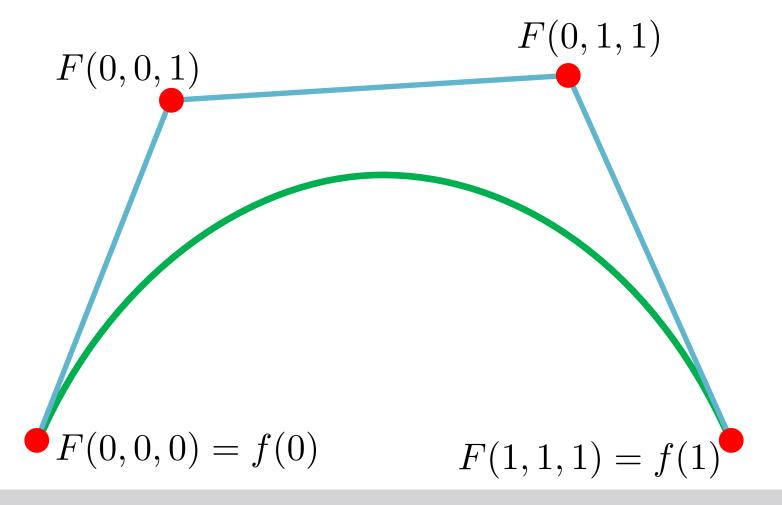
Suspicion: Application to time series analysis? ML?

C. Jordan, 1874

Gram-Schmidt on first n derivatives

What do these calculations look like in software?

Old-School Approach



Piecewise smooth approximations

Question

What is the arc length of a cubic Bézier curve?

$$\int_{a}^{b} \|\gamma'(t)\| \, dt$$

Question

What is the arc length of a cubic Bézier curve?

$$\int_{a}^{b} \|\gamma'(t)\| \, dt$$

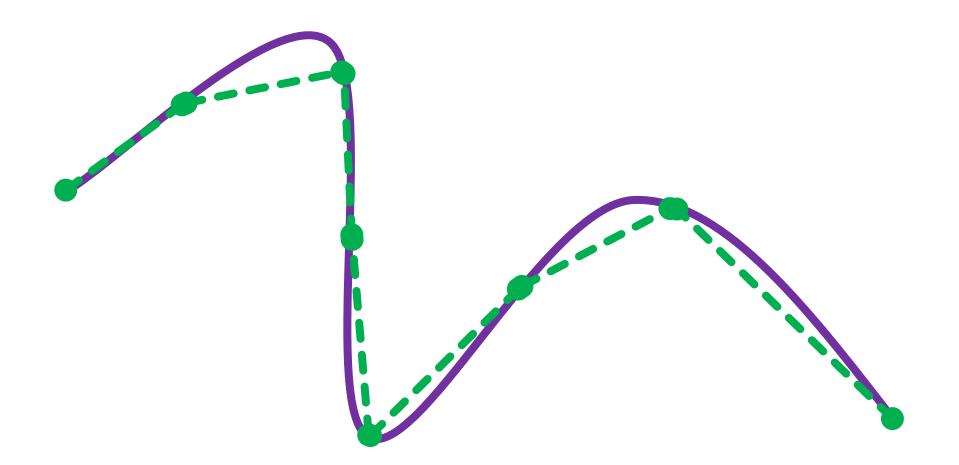
Not known in closed form.

Sad fact: **Closed-form** expressions rarely exist. When they do exist, they usually are messy.

Only Approximations Anyway

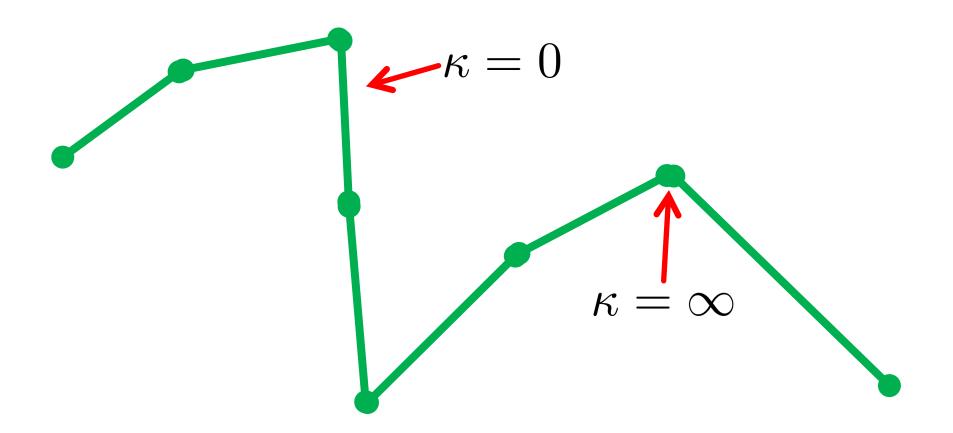
$\{\text{B\'ezier curves}\} \subsetneq \{\gamma : \mathbb{R} \to \mathbb{R}^3\}$

Equally Reasonable Approximation



Piecewise linear

Big Problem



Boring differential structure

Finite Difference Approach

$$f'(x) \approx \frac{1}{h} [f(x+h) - f(x)]$$

THEOREM: As , [insert statement].

Reality Check

 $f'(x) \approx \frac{1}{h} [f(x+h) - f(x)]$ THEC ment].

Two Key Considerations

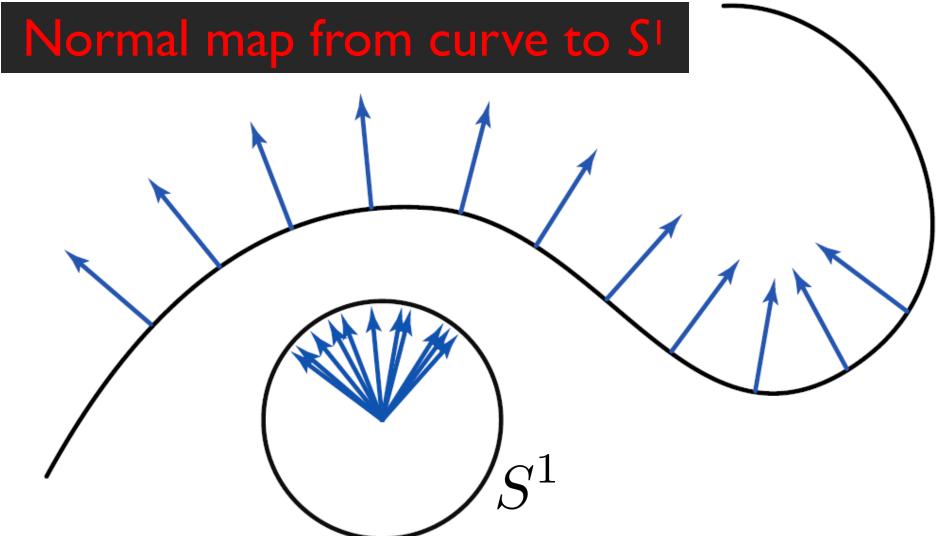
Convergence to continuous theory

• Discrete behavior

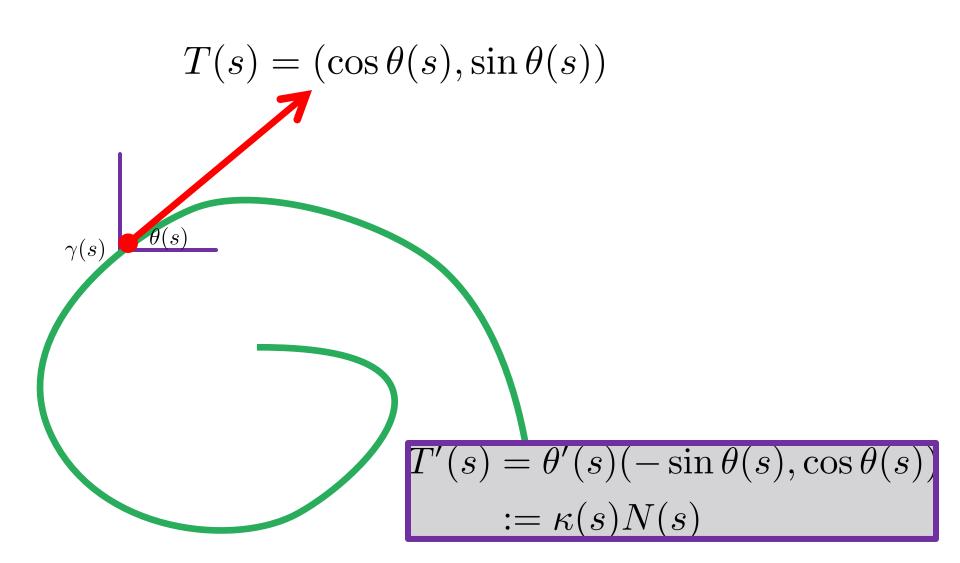
Examine discrete theories of differentiable curves.

Examine discrete theor<u>ies</u> of differentiable curves.

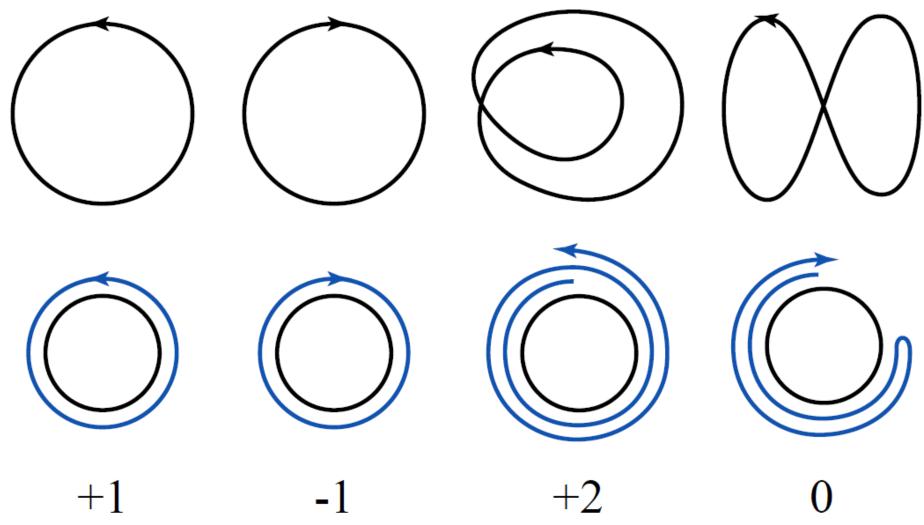
Gauss Map



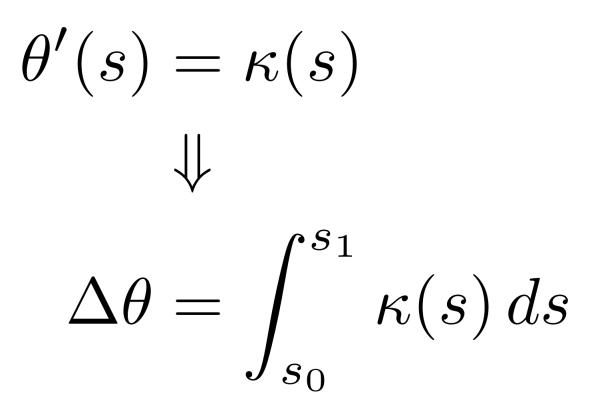
Signed Curvature on Plane Curves



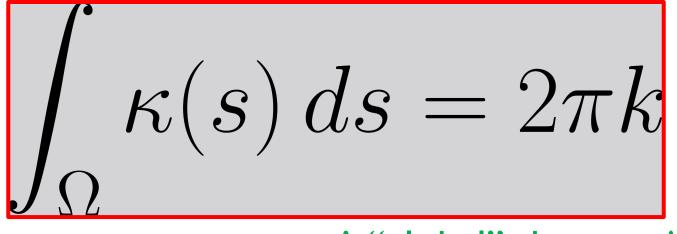
Turning Numbers



Recovering Theta

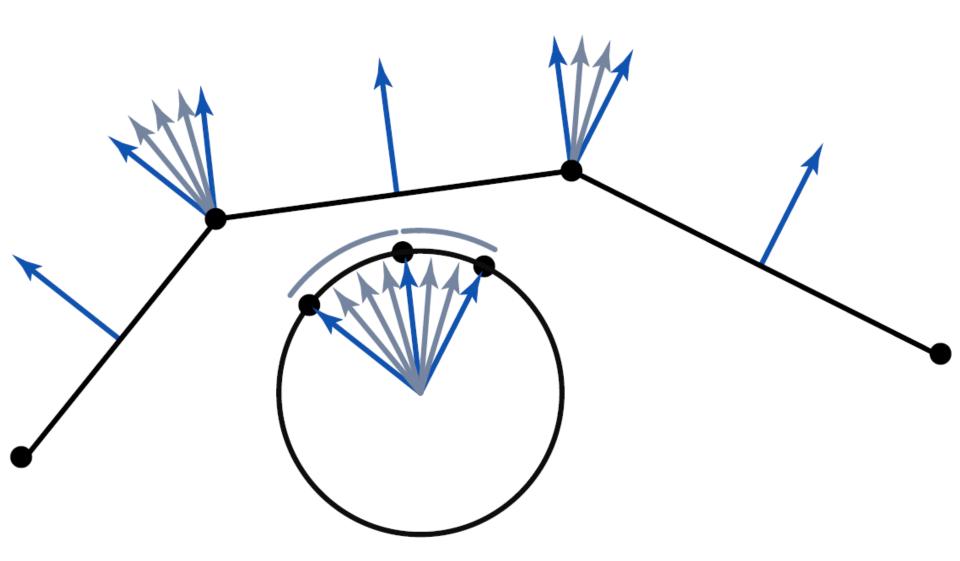


Turning Number Theorem

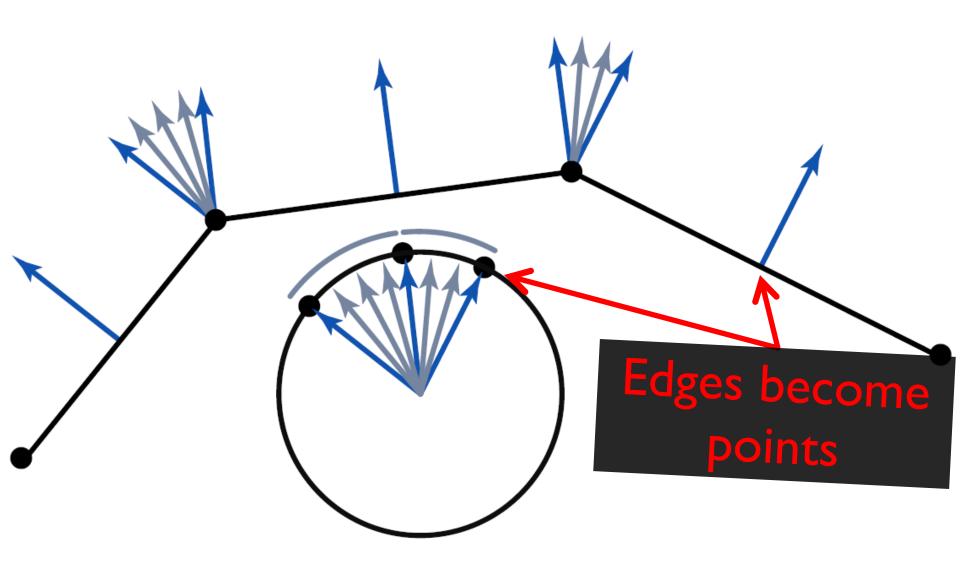


A "global" theorem!

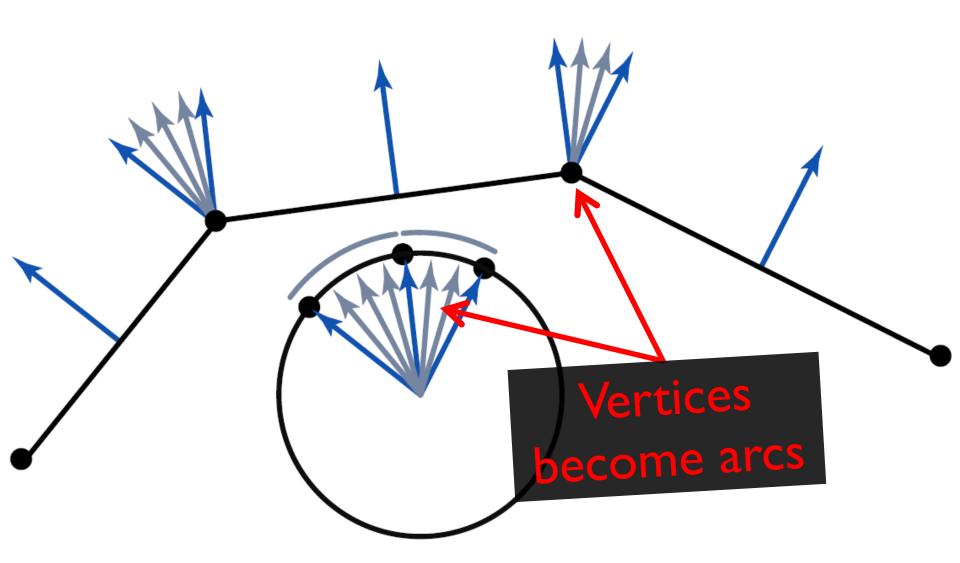
Discrete Gauss Map



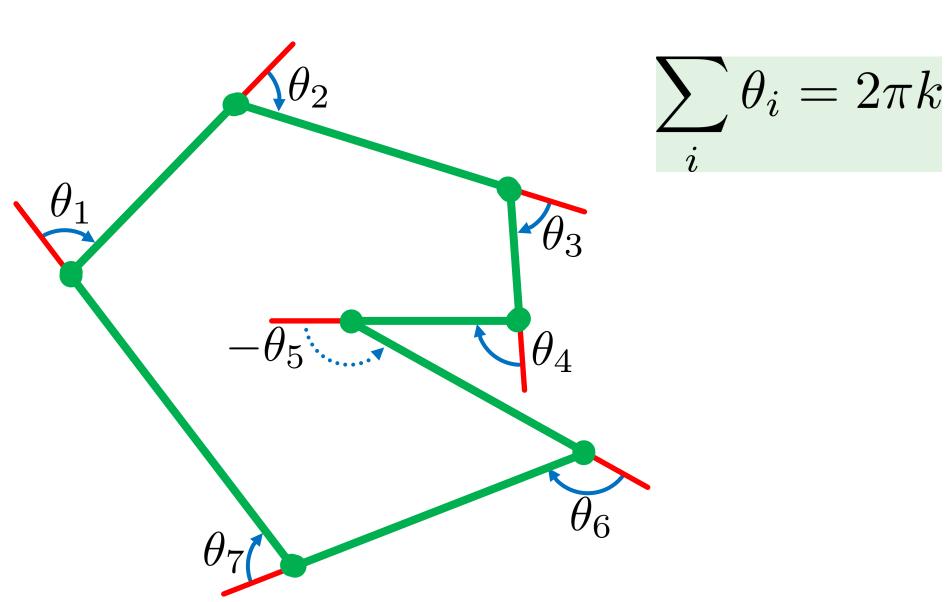
Discrete Gauss Map



Discrete Gauss Map

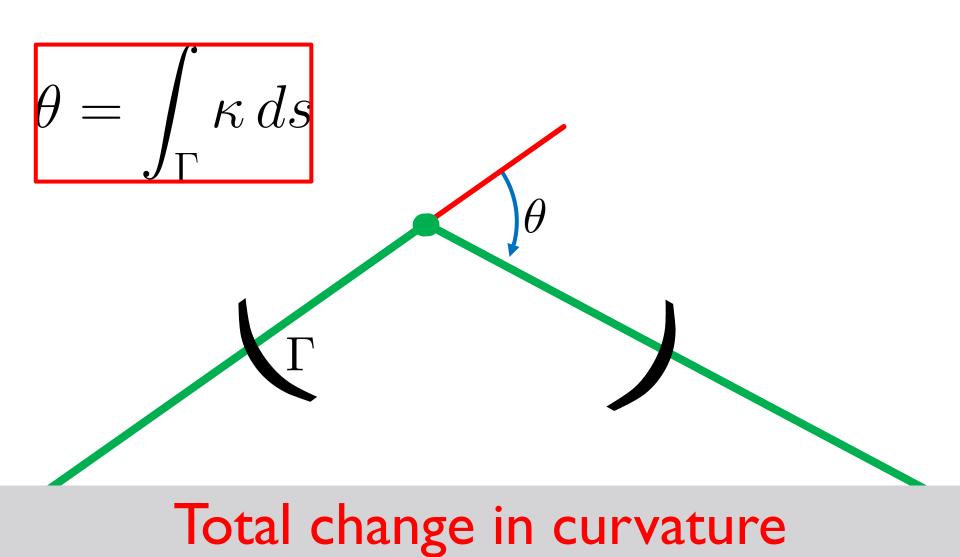


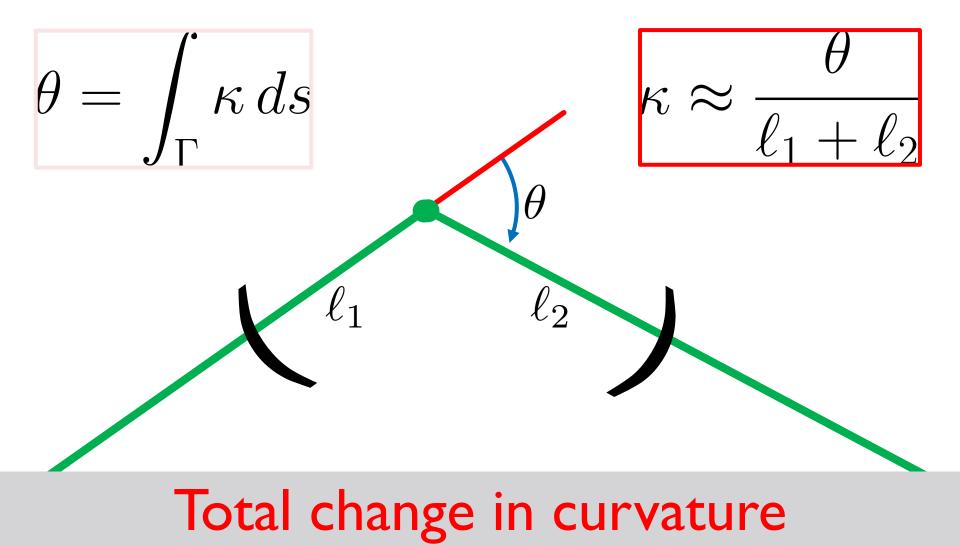
Key Observation



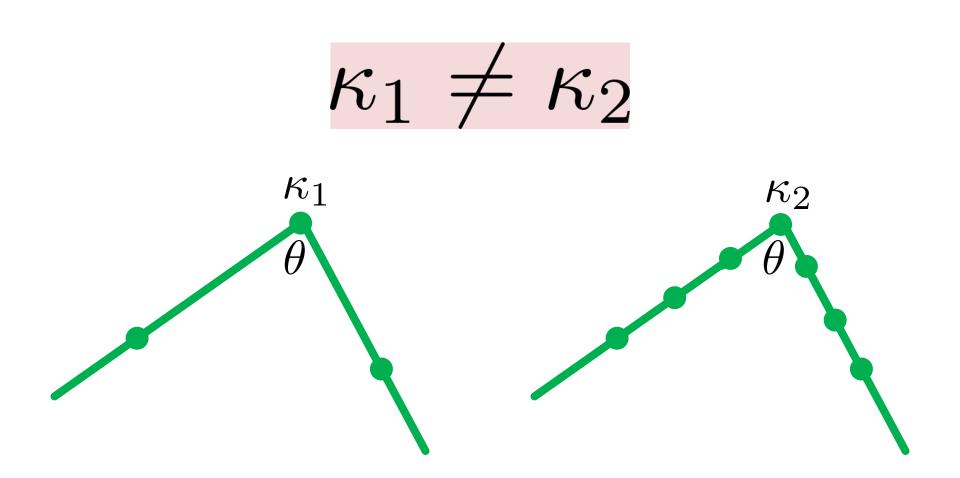
H

Total change in curvature





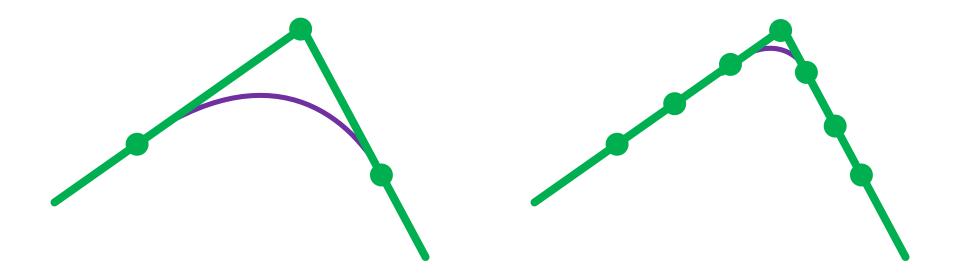
Interesting Distinction



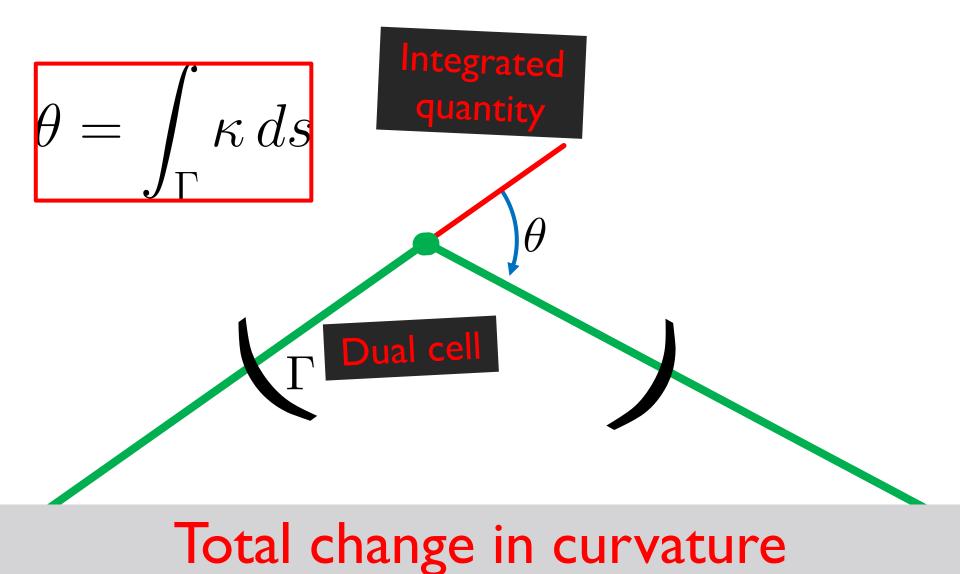
Same integrated curvature

Interesting Distinction

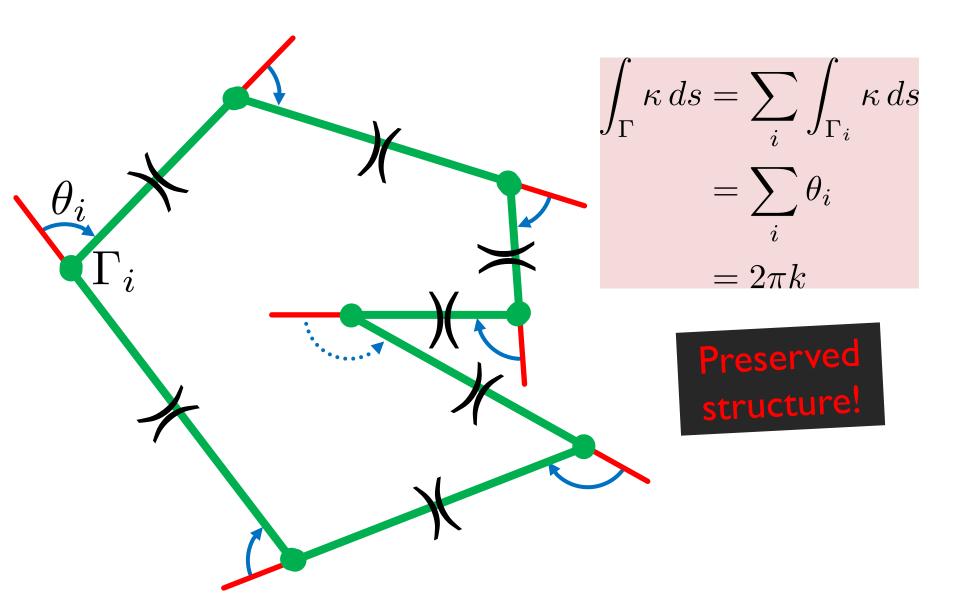
 $\kappa_1 \neq \kappa_2$



Same integrated curvature



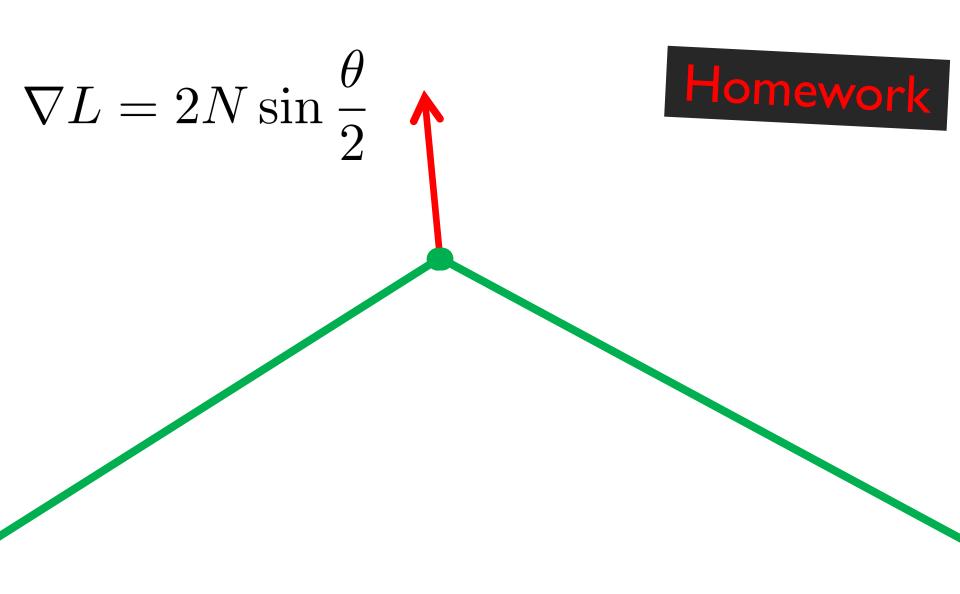
Discrete Turning Angle Theorem



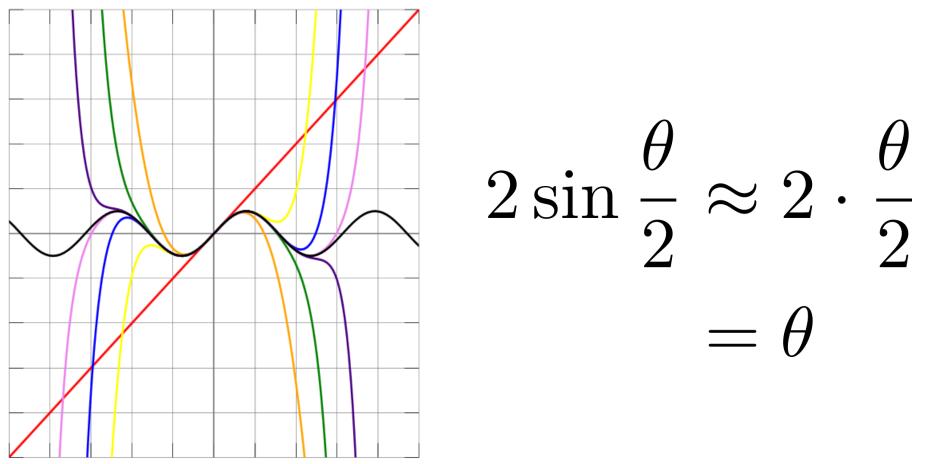
Alternative Definition

 $-\kappa N$ decreases length the fastest.

Discrete Case



For Small



http://en.wikipedia.org/wiki/Taylor_series

Same behavior in the limit

Remaining Question

Does discrete curvature converge in limit?

Yes!

Remaining Question

Questions:

- Type of convergence?
- Sampling?
- Class of curves?

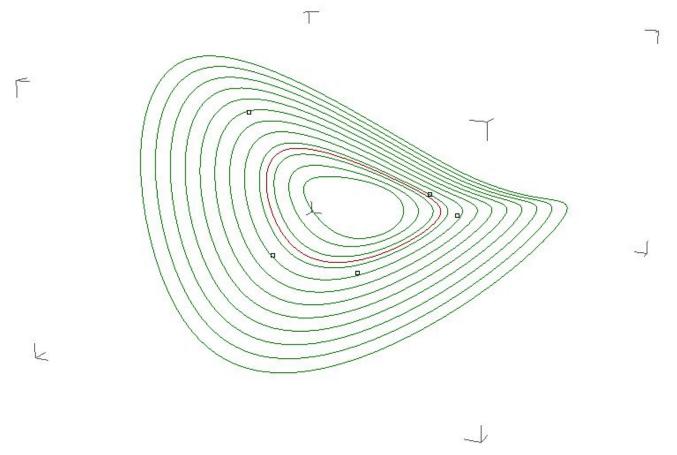
Does discrete curvature converge in limit?

Discrete Differential Geometry

Different discrete behavior

• Same convergence

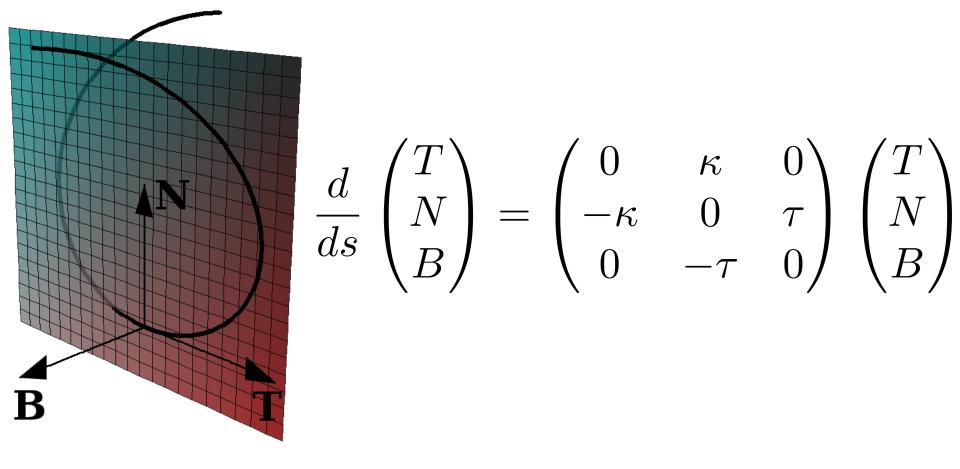
Next



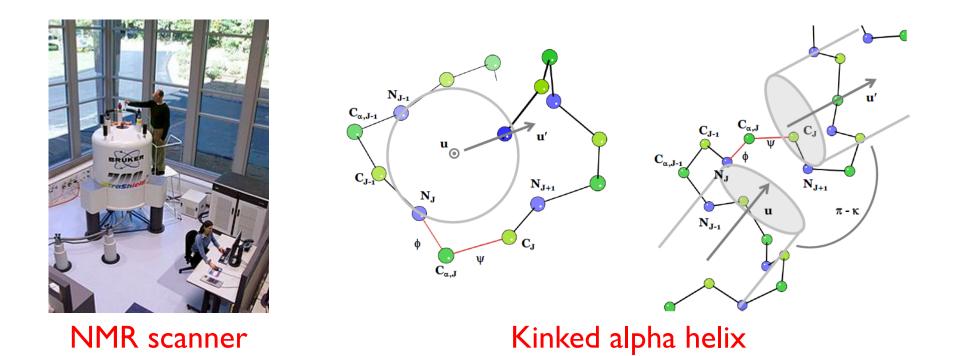
http://www.grasshopper3d.com/forum/topics/offseting-3d-curves-component

Curves in 3D

Frenet Frame



Application



Structure Determination of Membrane Proteins Using Discrete Frenet Frame and Solid State NMR Restraints Achuthan and Quine

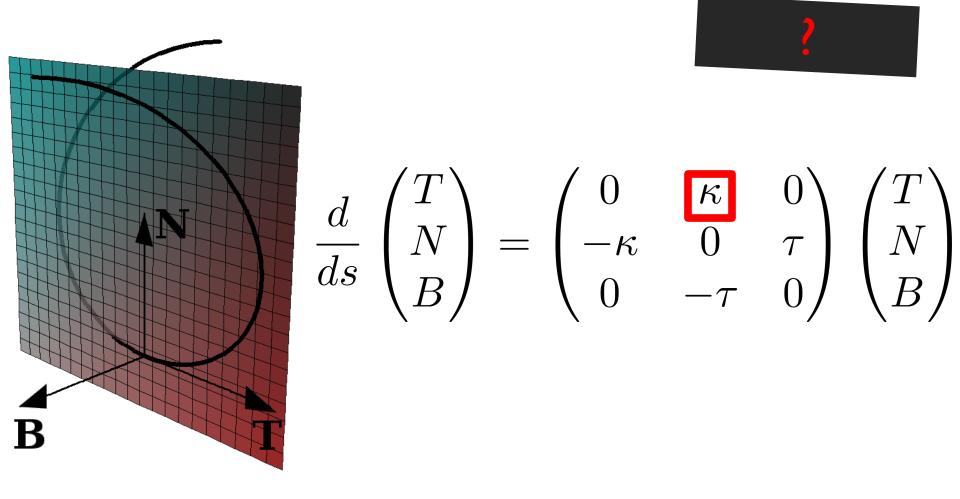
Discrete Mathematics and its Applications, ed. M. Sethumadhavan (2006)

Potential Discretization

$$T_{j} = \frac{p_{j+1} - p_{j}}{\|p_{j+1} - p_{j}\|}$$
$$B_{j} = t_{j-1} \times t_{j}$$
$$N_{j} = b_{j} \times t_{j}$$
Discrete Frenet frame

Discrete frame introduced in: **The resultant electric moment of complex molecules** Eyring, Physical Review, 39(4):746—748, 1932.

Frenet Frame: Issue

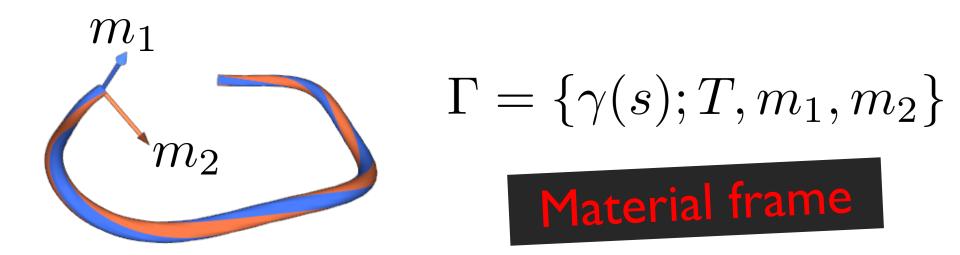


Segments Not Always Enough

http://www.cs.columbia.edu/cg/rods/

Simulation Goal

Adapted Framed Curve



http://www.cs.columbia.edu/cg/rods/

Normal part encodes twist

Bending Energy

$$E_{\text{bend}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \alpha \kappa^2 \, ds$$

Punish turning the steering wheel

$$\kappa N = T'$$

= $(T' \cdot T)T + (T' \cdot m_1)m_1 + (T' \cdot m_2)m_2$
= $(T' \cdot m_1)m_1 + (T' \cdot m_2)m_2$

 $:= \omega_1 m_1 + \omega_2 m_2$

Bending Energy

$$E_{\text{bend}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \alpha(\omega_1^2 + \omega_2^2) \, ds$$

Punish turning the steering wheel

$$\kappa N = T'$$

= $(T' \cdot T)T + (T' \cdot m_1)m_1 + (T' \cdot m_2)m_2$
= $(T' \cdot m_1)m_1 + (T' \cdot m_2)m_2$

 $:= \omega_1 m_1 + \omega_2 m_2$

Twisting Energy

$$E_{\text{twist}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \beta m^2 \, ds$$

Punish non-tangent change in material frame

$$m := m'_1 \cdot m_2$$

= $\frac{d}{dt}(m_1 \cdot m_2) - m_1 \cdot m'_2$
= $-m_1 \cdot m'_2$

Twisting Energy

$$E_{\text{twist}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \beta m^2 \, ds$$

Punish non-tangent change in material frame

$$m := m'_1 \cdot m_2$$

= $\frac{d}{dt}(m_1 \cdot m_2) - m_1 \cdot m'_2$
= $-m_1 \cdot m'_2$ Swapping and does not affect !

Which Basis to Use

THERE IS MORE THAN ONE WAY TO FRAME A CURVE

RICHARD L. BISHOP

The Frenet frame of a 3-times continuously differentiable (that is, C^3) nondegenerate curve in euclidean space has long been the standard vehicle for analysing properties of the curve invariant under euclidean motions. For arbitrary moving frames, that is, orthonormal basis fields, we can express the derivatives of the frame with respect to the curve parameter in terms of the frame itself, and due to orthonormality the coefficient matrix is always skew-symmetric. Thus it generally has three nonzero entries. The Frenet frame gains part of its special significance from the fact that one of the three derivatives is always zero. Another feature of the Frenet frame is that it is *adapted* to the curve: the members are either tangent to or perpendicular to the curve. It is the purpose of this paper to show that there are other frames which have these same advantages and to compare them with the Frenet frame.

1. Relatively parallel fields. We say that a normal vector field M along a curve is relatively parallel if its derivative is tangential. Such a field turns only whatever amount is necessary for it to remain normal, so it is as close to being parallel as possible without losing normality. Since its derivative is perpendicular to it, a relatively parallel normal field has constant length. Such fields occur classically in

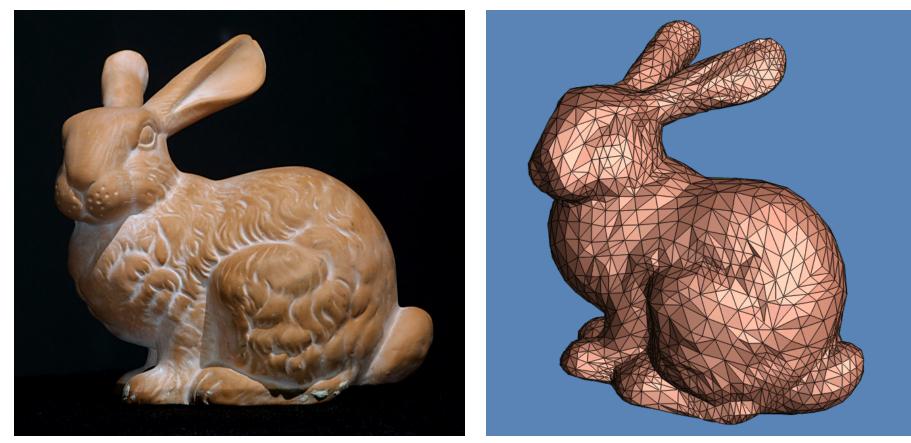
Curve-Angle Representation

$$m_1 = u\cos\theta + v\sin\theta$$
$$m_2 = -u\sin\theta + v\cos\theta$$

$$E_{\text{twist}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \beta(\theta')^2 \, ds$$

Degrees of freedom for elastic energy: Shape of curve Twist angle

Next



Surfaces

http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg http://www.stat.washington.edu/wxs/images/BUNMID.gif