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Syllabus

• Course website
• https://cse291-i.github.io

• Five units
• Geometry Basics
• Laplacian Operator and Spectral Graph Theory
• Data Embedding and Deep Learning
• Map Networks
• Deep Learning on 3D Data

https://cse291-i.github.io


Who we are?

Instructor: Hao Su Teaching Assistant: Meng Song



Logistics

Grading (tentative)
• Quizzes 20%
• Lecture presentation 40%
• Course project presentation 20%
• Course project writeup 20%
• There will not be a final exam.



Pre-requisite

• Try to be as self-contained as possible

• Proficiency in Python and Matlab

• Calculus, Linear Algebra

• Machine learning
• Classification
• Optimization



Numerical Tools  
for Geometry

Credit: MIT 6.838, Justin Solomon



Motivation

Numerical problems abound
in modern geometry applications.

Quick summary!
Mostly for common ground:  You may already know this material.

First half is important; remainder summarizes interesting recent tools.



Two Roles

•Client  
Which optimization tool is relevant? 
 

•Designer 
Can I design an algorithm for this problem?



Our Bias

Numerical analysis is a huge field.

Patterns, algorithms, & examples 
common in geometry.



Rough Plan

• Linear problems 

• Unconstrained optimization  

• Equality-constrained optimization



Rough Plan

• Linear problems 

• Unconstrained optimization  

• Equality-constrained optimization



Vector Spaces and Linear Operators



Abstract Example



In Finite Dimensions



Linear System of Equations

Simple “inverse problem”



Common Strategies

• Gaussian elimination

•O(n3) time to solve Ax=b or to invert

• But:  Inversion is unstable and slower!

• Never ever compute A-1 if you can avoid it.



Interesting Perspective



Simple Example



Structure?



Linear Solver Considerations

• Never construct  explicitly  
(if you can avoid it) 

• Added structure helps 
Sparsity, symmetry, positive definiteness, bandedness



Two Classes of Solvers

• Direct (explicit matrix)

•Dense:  Gaussian elimination/LU, QR for least-squares
•Sparse:  Reordering (SuiteSparse, Eigen)

• Iterative (apply matrix repeatedly)

•Positive definite:  Conjugate gradients
•Symmetric:  MINRES, GMRES
•Generic:  LSQR



Very Common:  Sparsity

Induced by the connectivity of 
the triangle mesh.

Iteration of CG has local effect
 Precondition!



Rough Plan

• Linear problems 

• Unconstrained optimization  

• Equality-constrained optimization



Optimization Terminology

Objective (“Energy Function”)



Optimization Terminology

Equality Constraints



Optimization Terminology

Inequality Constraints



Notions from Calculus

Gradient
https://en.wikipedia.org/?title=Gradient



Notions from Calculus

Jacobian
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant



Notions from Calculus

Hessian
http://math.etsu.edu/multicalc/prealpha/Chap2/Chap2-5/10-3a-t3.gif



Optimization to Root-Finding

Critical point

(unconstrained)

Saddle point

Local min

Local max



Encapsulates Many Problems



How effective are 
generic 

optimization tools?



Generic Advice

Try the

simplest solver first.



Quadratic with Linear Equality

(assume A is symmetric and positive definite)



Useful Document

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf

The Matrix Cookbook
Petersen and Pedersen



Special Case:  Least-Squares

Normal equations
(better solvers for this case!)



Example:  Mesh Embedding

G. Peyré, mesh processing course slides



Linear Solve for Embedding

wij ≡ 1
wij

•            : Tutte embedding
•       from mesh:  Harmonic embedding

Assumption:   symmetric.



Returning to Parameterization

What if 
      ={}? V0



Nontriviality Constraint

Prevents trivial solution         .

Extract the smallest eigenvalue.

x ≡ 0



Basic Idea of Eigenalgorithms



Rough Plan

• Linear problems 

• Unconstrained optimization  

• Equality-constrained optimization



Unstructured.

Unconstrained Optimization



Basic Algorithms

Gradient descent

Line search

Multiple optima!



Basic Algorithms

Accelerated gradient descent

Inverse quadratic convergence on convex problems!
(Nesterov 1983)



Basic Algorithms

Newton’s Method

1

2

3

Line search 
for stability



• (Often sparse) approximation from previous samples and 
gradients

• Inverse in closed form!

Basic Algorithms

Quasi-Newton:  BFGS and friends

Hessian 
approximation



Example:  Shape Interpolation

Fröhlich and Botsch.  “Example-Driven Deformations Based on Discrete Shells.”  CGF 2011.



Interpolation Pipeline

Roughly:

1.  Linearly interpolate edge lengths and dihedral 
angles.  
 

2.  Nonlinear optimization for vertex positions.

Sum of squares: 
Gauss-Newton



Software

• Matlab:  fminunc or minfunc 
• C++:  libLBFGS, dlib, others

Typically provide functions for function and gradient (and 
optionally, Hessian).

Try several!



Some Tricks

Regularization



Some Tricks

Multiscale/graduated optimization



Rough Plan

• Linear problems 

• Unconstrained optimization  

• Equality-constrained optimization



Lagrange Multipliers: Idea



Lagrange Multipliers: Idea

- Decrease f: 
- Violate constraint: 



Lagrange Multipliers: Idea

Want:



Example:  Symmetric Eigenvectors



Use of Lagrange Multipliers

Turns constrained optimization into

unconstrained root-finding.



Many Options

•Reparameterization 
Eliminate constraints to reduce to unconstrained case

•Newton’s method 
Approximation: quadratic function with linear constraint  

• Penalty method 
Augment objective with barrier term, e.g. f(x) + ρ |g(x) |



Trust Region Methods

Example:  Levenberg-Marquardt

Fix (or adjust) 
damping parameter .



Convex Optimization Tools

Try lightweight options

versus

Sometimes work for non-convex problems…

Aside:



Alternating Projection

d can be a 
Bregman divergence



Augmented Lagrangians

Add constraint to objective

Does nothing when 
constraint is satisfied



Alternating Direction 
Method of Multipliers (ADMM)

https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf


