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Review: Optimal Transport
Discrete Kantorovish formulation(Earth mover’s distance)

Discrete distributions a ∈ Rn
+, b ∈ Rm

+. Cost matrix C ∈ Rn×m
+ .

Ci ,j denotes the unit cost of transporting mass from ith point in a
to jth point in b.

U(a, b) = {P ∈ Rn×m
+ : P1m = a,PT

1n = b}

Pi ,j denotes how much mass from ith point in a is transported to
the jth point in b. U(a, b) is all valid transport plans. P is known
as a coupling matrix.

(Discrete) Optimal transport

A transport plan is optimal if it has the lowest cost.

LC(a,b) = min
P∈U(a,b)

∑
i ,j

Ci ,jPi ,j
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Review: Optimal Transport

Moving mass from 1 distribution to the other.
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Review: Optimal Transport

General formulation

LC (α, β) = min
π∈U(α,β)

∫
X×Y

c(x , y)dπ(x , y)

Probabilistic interpretation

LC (α, β) = min
X ,Y
{E(c(X ,Y )) : X ∼ α,Y ∼ β}

Intuition
Optimal transport gives a distance measure between probability
distributions.
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Wasserstein Distance

A special case of optimal transport. “A natural way to lift ground
distance to distribution distance.”

Definition
Let Pp(Ω) be the set of Borel probability measures with finite pth
moment defined on a given metric space (Ω, d). The
p-Wasserstein metric Wp, for p ≥ 1, on Pp(Ω) between
distribution µ and ν, is defined as

Wp(µ, ν) =
(

min
γ∈U(µ,ν)

∫
Ω×Ω

dp(x , y)dγ(x , y)
) 1

p
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1-Wasserstein Distance
Primal Problem

KP(µ, ν) = min
γ

∫
Ω×Ω

d(x , y)dγ(x , y)

s.t.

∫
Y
dγ(x , y) = p(x),

∫
X
dγ(x , y) = q(y)

γ(x , y) ≥ 0

Kantorovich-Rubinstein theorem

DP(µ, ν) = max
φ∈Lip1(X )

∫
X
φ(x)p(x)dx −

∫
X
φ(x)q(x)dx

DP(µ, ν) = max
φ∈Lip1(X )

Epφ(x)− Eqφ(x)

Lip1(X ) = {φ : |φ(x)− φ(y)| ≤ d(x , y)},∀x , y ∈ X
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1-Wasserstein Distance

1-D: area between CDF.
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Algorithm for Optimal Transport

Discrete problem: linear programming

Can be formulated as a minimum cost maximum flow problem.

If the distributions are uniform with the same number of elements.
The problem further reduces to a minimum cost bipartite matching.
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Any Questions?
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Drawbacks of other distances

Let X ∼ P and Y ∼ Q and let the densities be p and q. Assume
X ,Y ∈ Rd

Other distance functions

I Total Variation: supA |P(A)− Q(A)| = 1
2

∫
|p − q|

I Hellinger:
√∫

(
√
p −√q)2

I L2:
∫

(p − q)2
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Drawbacks of other distances

Drawbacks

I Provide no information about why the distributions differ
I Problematic when comparing discrete to continuous

I e.g. uniform P on [0, 1] and uniform Q on {0, 1/N, 2/N, ..., 1}
I Ignore the underlying geometry of the space
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Drawbacks of other distances

Figure: Three densities p1, p2, p3. Each pair has the same distance in
L1, L2, Hellinger etc. But in Wasserstein distance, p1 and p2 are close.
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Drawbacks of other distances

Figure: Top: Some random circles. Bottom left: Euclidean average of the
circles. Bottom right: Wasserstein barycenter.
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Drawbacks of other distances

Figure: Top row: Geodesic path from P0 to P1. Bottom row: Euclidean
path from P0 to P1.
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Learning Wasserstein Embeddings

Motivation

I Solving LP for computing Wasserstein distance between
discrete distributions (histograms) is super cubic in complexity

I Some approximation techniques
I slicing techniques
I entropic regularization
I stochastic optimization

I However, computing pairwise Wasserstein distances between a
huge number of large distributions (e.g. image collection) or
optimization problems with a lot of Wasserstein distances
(e.g. barycenters) is still intractable.
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Learning Wasserstein Embeddings

Idea

I Learn an embedding where Wasserstein distance is reproduced
by Euclidean norm

I Once the embedding is found, computing distances or solving
problems related to Wasserstein distances can be conducted
extremely fast

I Simultaneously learn the inverse mapping to improve
performance and allow interpretations of the results
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Deep Wasserstein Embedding

I Pre-computed dataset consists of pair of histograms
{x1

i , x
2
i }i∈1,...,n of dimensionality d and their corresponding

W2 distances {yi = W 2
2 (x1

i , x
2
i )}i∈1,...,n

I Siasame architecture + Decoder
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Deep Wasserstein Embedding

I Global objective function

min
φ,ψ

∑
i

∥∥∥∥∥φ(x1
i )− φ(x2

i )
∥∥2 − yi

∥∥∥2
+ λ

∑
i

KL(ψ(φ(x1
i )), x1

i ) + KL(ψ(φ(x2
i )), x2

i )
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Deep Wasserstein Embedding

Decoder eases the learning
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Wasserstein Barycenters

Idea

I An analogy with barycenters in a Euclidean space
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Principal Geodesic Analysis

Idea

I Generalization of PCA
I Find approximated Fréchet mean x̄ =

∑N
i φ(xi ) and subtract

it to all samples
I Build Vk = span(v1, ..., vk) recusively
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Numerical Experiments

MNIST dataset

I MNIST: contains 28× 28 images from 10 digit classes

I Dataset used: 1 million pairs from 60000 samples with exact
Wasserstein distances
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Numerical Experiments

MNIST dataset

I Computational performance

I Interpretation: better suited for mining large scale datasets
and online applications
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Numerical Experiments

MNIST dataset

I Wasserstein Barycenter
I Computed with uniform weights from 1000 samples per class
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Numerical Experiments

MNIST dataset

I Principal Geodesic Analysis
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Numerical Experiments
Google Doodle Dataset

I Google Doodle: crowd sourced dataset of 50 million drawings

I Dataset used: Three classes, Cat, Crab, and Face, rendered
into 28x28 grayscale images. Draw 1 million pairs and
compute exact Wasserstein distances
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Numerical Experiments

Google Doodle Dataset

I Computational performance
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Numerical Experiments

Google Doodle Dataset

I Interpolation
I LP solver: 20 sec/interp, noisy
I Regularized Wasserstein barycenter: 4 sec/interp, smooth,

loosing details
I DWE: 4 ms/interp, smooth, looses some details
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Numerical Experiments

Google Doodle Dataset

I Interpolation (more results)
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Numerical Experiments

Google Doodle Dataset

I Nearest neighbor walk
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Entropic Regularization

Kantorovish formulation

U(a, b) = {P ∈ Rn×m
+ : P1m = a,PT

1n = b}

Pi ,j denotes how much mass from ith point in a is transported to
the jth point in b. U(a, b) is all valid transport plans. P is known
as a coupling matrix.

Entropy

Discrete entropy of a coupling matrix P:

H(P) := −
∑
i ,j

Pi ,j(log(Pi ,j)− 1)

H(P) = −∞ if any entry of P is negative or 0.
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Entropic Regularization

property

H is 1-strongly concave:

∀x , y , (∇f (x)−∇f (y))T (x − y) ≤ ||x − y ||22

∀x ,−Hf (x)− I is positive semidefinite

Motivation
Larger H(P) → distribution more uniform.
We can use H to regularize optimal transport.

Lc(a,b) = min
P∈U(a,b)

〈P,C〉

Lεc(a,b) = min
P∈U(a,b)

〈P,C〉 − εH(P)
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Entropic Regularization

Lεc(a,b) = min
P∈U(a,b)

〈P,C〉 − εH(P)

Lεc(a,b) is known as the Sinkhorn divergence.

Properties

1. There exists unique solution Pε.

2. When ε→ 0, Pε → P.

3. When ε→∞, Pε → abT (uniform distribution).
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Entropic Regularization

Proposition (4.3)

Solution to the discrete entropic optimal transport problem

Lεc(a,b) = min
P∈U(a,b)

〈P,C〉 − εH(P)

is unique and has the form

∀(i , j) ∈ [n]× [m],Pi ,j = uiKi ,jvj

or equivalently,
P = diag(u)Kdiag(v)

where
Ki ,j = e−Ci,j/ε, (u, v) ∈ Rn

+ × Rm
+
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Entropic Regularization

Sinkhorn iterations

P = diag(u)Kdiag(v)

Adding constraints P1m = a,PT
1n = b,

u� (Kv) = a, v� (KTu) = b

This problem is known as “matrix scaling” and can be solved
iteratively:

u(l+1) =
a

Kv(l)
, v(l+1) =

b

KTu(l+1)

Note: this algorithm converges but possibly to different values for
different initialization, since (λu, v/λ) is also a solution.
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Entropic Regularization

Complexity

Let n = m for simplicity, to achieve approximate transport plan
P̂ ∈ U(a,b) with 〈P̂,C〉 ≤ LC(a,b) + τ , the time complexity is

O(n2 log nτ−3)

Remarks
The Sinkhorn iteration approximates optimal transport. Given
enough time, it can give arbitrarily close approximations.
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Any Questions?
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“Size” of Wasserstein space

Question
How well can we embed other spaces into Wasserstein spaces?

Universality

A space is universal if it can embed any finite dimensional metric
space with O(1) distortion.

W1(l1) is universal. (Bourgain, 1986)

l1 is the sequence space consisting of sequences (xn) s.t.∑
n

|xn| <∞

Or intuitively, the infinite dimensional vector space with finite sum.
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“Size” of Wasserstein space

Open Problem

Is W1(Rk) universal for some k?

Snowflake Universality

The θ−snowflake of a metric space (Y , dY ) is (Y , dθY ).

cWp(R3)(X , d
1
p

X ) = 1

However,

only for p ∈ (1,∞)

Open Problem

Does it hold for p = 1 ?
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“Size” of Wasserstein space

Question
How well can Wasserstein space embed into other spaces?

Result
Embedding W2(R3) into L1 will incur Ω(

√
log n) distortion.

Intuitively, it is hard to faithfully embed Wasserstein space into
some very large spaces. (Open problem: is this bound tight?)
For more open problems see: Snowflake Universality Of Wasserstein Spaces by Andoni, Naor and Neiman
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Learning Entropic Wasserstein
Embeddings

Motivations

I Embedding in Euclidean space

– Use distances and angles between vectors to encode the levels
of association.

– Bourgain’s theorem

(X , d)
O(logn)−−−−→ `O(log2n)

p

– Lp distances ignore the geometry of the distributions.
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Learning Entropic Wasserstein
Embeddings

Motivations

I Wasserstein space

– A ’large’ space: Many spaces can embed into Wasserstein
spaces with low distortion, while the converse may not hold

– A ’universal’ space: Can embed arbitrary metrics on finite
spaces. e.g. W1(l1)

I Use Sinkhorn iteration to approximate Wasserstein distance.

– Efficient computation.
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Learning Entropic Wasserstein
Embeddings

Motivations

I What can we embed in theory?

– Metric spaces A and B, map φ : A → B is embedding of A
into B

– LdA(u, v) ≤ dB(φ(u), φ(v)) ≤ CLdA(u, v),∀u, v ∈ A
– The distortion of the embedding φ is the smallest C such that

the equation holds.
– Can characterize how “large” a space is (its representational

capacity) by the spaces that embed into it with low distortion.
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Learning Entropic Wasserstein
Embeddings

The learning task

I Objects C: words, images, nodes

I target relationships r: {(u(i), v (i), r(u(i), v (i)))}
I Our goal is to find a map φ : C → Wp(x) such that the

relationship r(u,v) can be recovered from the Wasserstein
distance between φ(u) and φ(v), for u, v ∈ C
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Learning Entropic Wasserstein
Embeddings

Representation

I Discrete distributions on finite sets of points in Rn

µ =
M∑
i=1

uiδ
(i)
x , ν =

M∑
i=1

viδ
(i)
y →Wp(µ, ν)

M∑
i=1

ui =
M∑
i=1

vi = 1, ui , vi ≥ 0,∀i ∈ {1, ...,M}

I Fix weights and only learn positions.
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Learning Entropic Wasserstein
Embeddings

Optimization

I replace Wp with the Sinkhorn divergence Wλ
p

I Try to find

φ∗ = arg min
φ∈H

1

N

N∑
i

L(Wλ
p (φ(u(i)), φ(v (i))), r (i))
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Empirical Study

Embedding complex networks

I Input space C: collection of vertices for each network

I To learn a map φ such that W1(φ(u), φ(v)) matches the
shortest path distance between vertices u and v .

I Minimize mean distortion

φ∗ = arg min
φ

1(n
2

)∑
j>i

|Wλ
1 (φ(u(i)), φ(v (i)))− dc(vi , vj)|

dc(vi , vj)
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Empirical Study
Embedding performance on random networks
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Empirical Study

Embedding performance on real networks
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Empirical Study

Word2Cloud: Wasserstein word embeddings

I sentence s = (x0, x1, ...xn), word xi
I Use a Siamese network to learn word embeddings

φ∗ = arg min
φ

∑
r [Wλ

1 (φ(xi ), φ(xj))]2+(1−r)[m−W λ
1 (φ(xi ), φ(xj))]2

where r=1 for related embeddings and r=0 for unrelated ones.
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Empirical Study

Word2Cloud

I Nearest Neighbors
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Empirical Study
Word2Cloud: Visualization
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