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Surface Editing

Challenge: 
How to preserve details of 
the surface as much as 
possible? 





Why Laplacian? 

Encode Intrinsic Geometry (local shape details) of 
the Surface! (How?)

Euclidean 
Coordinates

Laplacian 
Coordinates

indices of neighbors of vi



Whiteboard Time



L = I - D-1AMatrix Form: 

A is the mesh adjacency matrix

where di is the degree of 
vi

Theorem: Let G be a graph. Then the dimension of the nullspace of L(G) is 
the number of connected components of G.

In a connected mesh, L has rank n-1. Given Δ and L, V can be 
recovered by fixing one vertex. (Invariant to translation)



Given the original vertices V = {v1, …, vn},

Find a set of new vertices V' = {v'1, …, v'n} such that the desired constraints

given 

by the user’s operation is satisfied, and the detail of the mesh is preserved as 

much as possible.

Objective

Minimize the error function:

To preserve surface details 
To satisfy constraints 
specified by the user



Laplacian Coordinates are only 
invariant to translation, not scale or 
rotation. 

If ui implies a linear transformation 
consisting of rotation or scaling, 
then details of the surface cannot 
be transformed properly.

Objective



Objective
To make the laplacian coordinates robust to such linear transformations,

compute an appropriate transformation Ti for each vertex and revise the 

error function:

Ti computed by:

Ti is unknown but can be expressed as a linear function of V' :

(transformations should be similar for vi and its neighbors)



Objective

Reasonable Ti should consist of translation, 
isotropic scales and rotation.

Problem: 

Ti is unconstrained and may lead to the irregular distortions which 
are not categorized as rigid body transformation or scaling.



Objective
Linearize Rotation:
3D rotation determined by an axis u and a angle of rotation !
Assume u = (u1, u2, u3)T and ||u|| = 1
Associate a skew-symmetric matrix
For all v, 

Then the rotation matrix computed by:

(Rodrigues formula)

A linear approximation is needed.
Omit when ! is small. 



Objective:
Add in isotropic scaling s and translation t, put in homogeneous system:

Let h = (h1, h2, h3)T = s sin! u

Ti = 

Ti is characterized by s, h and t



Objective:

Ti determined by minimizing || Ai - bi ||

Construct 

and



Limitation

Can’t handle rotation with large angle.



Experiment
Basic Mesh Editing



Experiment
Coating transfer: 



Coating transfer:
Let    and    be the Laplacian coordinates of the vertex i in the original surface and 
the same surface after smoothed (low-frequency surface). Then we can get the 
encoding of the coating at vertex i:



Assume that surface S and surface U share the same connectivity. Then, the 
coating transfer from surface S onto surface U is expressed as follows where ∆ 
denotes the Laplacian coordinates of the vertices of U:

Coating transfer:



Mapping
To do the coating transfer between arbitrary surfaces with different connectivity, 
we need to define a mapping between the two surfaces. This mapping is 
established by parameterizing the meshes over a common domain.



Mixed Details



Transplanting Surface Patching

● Find the transitional regions

● Create the mapping

● Interpolate the Laplacian coordinates 





Reinforcement Learning
● Discrete time frame !
● State of environment "# ∈ %
● Agent take action &# ∈ ' according to policy ( &# "# : = + &# "#
● Environment give agent reward ,#("#, &#)
● Environment state change to "#01~ (("#01|"#, &#)

Goal: Learn policy maximize the accumulated reward

4
#
5#,#

5 is discounted factor
● Often maintain replay buffer 6 = "#, &#, 7#, "#01 #81,..,:



Representation in Reinforcement Learning

Performance of ML algorithm relies on the data representation
Natural question:

○ How to get a better task-orientation representation in RL

○ Answer: Laplacian induced representation is one

Reward map defined by two kind of distance to the red target 



Theoretical framework

• A finite state space set ! with ! elements

• Probability measure " distributed over !

• Hilbert space ℋ, for which element $ are function $: ! → ℝ

• Linear operator (:ℋ → ℋ

• Inner product: ⟨$, +⟩-:= ∫0 $ 1 + 1 2"(1)

• Then it define a complete Hilbert space



Definition of Laplacian

● Self-adjoint linear operator !: ⟨#, !%⟩' = ⟨!#, %⟩'
● Self-adjoint affinity:     ) ∶ + × + → ./

● Linear operator A:     !# 0 := ∫3 # 4 ) 0, 4 56(4)
● Graph Laplacian L:     9# 0 = # 0 − !# 0 = I − A #(u)
● Goal: find 5 eigenfunction of  the smallest 5 eigen value



Back to Maze Problem

● Reward: reach red target -> positive reward; otherwise 0

● If state representation encode the real distance

Policy will simply be: 

○ Minimize the distance to target for each step

Intuition: 

○ Laplacian keep info of real distance



Graph Formulation in RL

● Given policy !, # $%&' $%, (% → #*($%&'|$%)
● Transitional distribution: #* . /

● 0 . = ∑3 #* . / 0(/) or       0 4 = ∫3 #* . / 60(/)

● Discrete: 7 ., / = '
8
9:(;|<)
=(;) + '

8
9:(<|;)
=(<)

● Next: Find smallest eigenfunction (eigen vector) by optimization
d-dim embedding:  ? . = [A' . , … , AC(.)]



Spectral graph drawing

● Goal: Find embedding (eigen vector) preserve affinity
● Objective G:

! =#
$
%$, '%$ (

= 1
2+,

+
,
#
$

%$ - − %$ /
01 -, / 23 - 23(/)

● Intuition: Pushing the high affinity embedding closer
● Additional constrain:

%$, %6 ( = 7$6 , impose orthonormal basis 



Objective to learn
● Previous objective and constrain: Too hard in experiment!
● Solution: Using sampled expectation from buffer !", $", %", !"&' "(',..,*
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]

Orthonormal constrain (loosed): 
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Small summary

● We want better state representation to preserve affinity

● It is known that Laplacian eigenfunction is such thing

● Direct computation of eigenfunction is intractable

● Using Neural Network to approximate

● Build a objective function

● Optimized NN with the derived loss



Experiment

1. Collect trajectory with model-free policy (random) for buffer

2. Learning state embedding based on objective

3. Evaluate the embeddings: (maze environment)

○ Goal achieving tasks: rewarded for reaching a given goal state !"

○ Two type of reward: sparse reward and shaped reward

○ Shaped reward: #$ = −||((*$+,) − ((!"))||



Experiment
RL algorithm: DQN1

1. Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529.



Experiment on continues state
RL algorithm: DDPG1

1. Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).



Summary

● Laplacian: both map and operator

● Laplacian induced representation can encode local structure

● Eigenfunction/eigenvalue of L can be good basis



Thank you and happy valentine day !


