

Lecture 9: Deep Learning on Point Cloud for Shape Analysis

Instructor: Hao Su

Feb 6, 2018

Agenda

PointNet: A Basic Architecture for Point Cloud Processing

Using PointNet for 3D Object Detection

Image understanding: From feature engineering to learning

Feature engineering

Hao Su

Lecture 9 - 3

. . .

Image understanding: From feature engineering to learning

Feature learning

Object classification accuracy on ImageNet (ILSVRC)

Prior art: Handcrafted 3D features

Representatives:

D2 [Osada, 2002]

Spin Images [Johnson, 1999]

Cons:

Hard Representation- Task-specific dependent

Fundamental challenge of 3D deep learning

Irregularity

(The most common 3D sensor data) Mesh

Hao Su

Solution 1: Convert irregular to regular

High space/time com@lexitv

Information loss in voxelization

Solution 2: Directly process point cloud data

End-to-end learning for unstructured,

unordered point data

Point cloud: N orderless points, each represented by a D dim coordinate \xrightarrow{D}

2D array representation

Point cloud: N orderless points, each represented by a D dim coordinate \xrightarrow{D}

2D array representation

Permutation invariance

Transformation invariance

Point cloud: N **orderless** points, each represented by a D dim coordinate

2D array representation

Permutation invariance

Permutation invariance:

$$f(x_1, x_2, \dots, x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n}), \quad x_i \in \mathbb{R}^D$$

Examples:

. . .

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

Hao Su

Observe:

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

Observe:

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

Observe:

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

Observe:

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

Q: What symmetric functions can be constructed by PointNet?

PointNet (vanilla)

Hao Su

A: Universal approximation to continuous symmetric functions

Theorem:

A Hausdorff continuous symmetric function $f: 2^{\chi} \to \mathbb{R}$ can be arbitrarily approximated by PointNet.

Permutation invariance

Transformation invariance

Transformation invariance is desirable

Let *S* be a shape. Then $f(T \cdot S) = f(S)$ *f*: classifier, *T*: transformation matrix

Input alignment to a canonical space

Incorporate transformer networks to feature space

Point Feature Transform: Feature alignment to a canonical space

Feature alignment to a canonical space

Efficiency of PointNet

Efficiency of PointNet

Efficiency of PointNet

Robustness to data corruption

Robustness to data corruption

Segmentation from partial scans

Visualize what is learned by reconstruction

Salient points are discovered!

Hao Su

Agenda

PointNet: A Basic Architecture for Point Cloud Processing

Using PointNet for 3D Object Detection

Current State of Computer Vision

2D Deep Learning

Network Architectures:

AlexNet, Network in Network, VGG, GoogleNet, STN, ResNet, DenseNet, ...

Frameworks for Recognition: *R-CNN, Fast R-CNN, Faster-RCNN, SSD, YOLO, Feature Pyramid Network (FPN), Mask R-CNN etc.*

3D Deep Learning

Network Architectures:

VoxNet, Multi-view CNN, FPNN, Octree CNN, Kdnetwork, PointNet, PointNet++ etc.

Current State of Computer Vision

2D Deep Learning

Network Architectures:

AlexNet, Network in Network, VGG, GoogleNet, STN, ResNet, DenseNet, ...

Frameworks for Recognition: *R-CNN, Fast R-CNN, Faster-RCNN, SSD, YOLO, Feature Pyramid Network (FPN), Mask R-CNN etc.*

3D Deep Learning

Network Architectures:

VoxNet, Multi-view CNN, FPNN, Octree CNN, Kdnetwork, PointNet, PointNet++ etc.

This work: A novel framework for <u>3D object detection with</u> PointNet architectures.

Input: RGB-D data

"D" can be sparse point cloud from LiDAR or dense depth map from indoor depth sensors

Output: Amodal 3D bounding boxes and semantic class labels for objects in the scene "amodal" means the 3D box is for the "complete" object even if part of it is invisible.

Figure from the recent VoxelNet paper from Apple.

Figure from ICCV17 paper 2d-driven 3d object detection.

Frustum PointNets for 3D Object Detection

+ Leveraging mature 2D detectors for region proposal and 3D search space reduction
+ Solving 3D detection problem with 3D data and 3D deep learning architectures
Our method ranks No. 1 on KITTI 3D Object Detection Benchmark

We get 5% higher AP than Apple's recent CVPR submission and more than 10% higher AP than previous SOTA in easy category

<u>Ca</u>	r								
	Method	Setting	Code	<u>Moderate</u>	Easy	Hard	Runtime	Environment	Compare
1	F-PointNet	***		70.39 %	81.20 %	62.19 %	0.17 s	GPU @ 3.0 Ghz (Python)	
2	<u>VxNet(LiDAR)</u>	**		65. 11 %	77.47 %	57.73 %	0.23 s	GPU @ 2.5 Ghz (Python + C/C++)	
3	AVOD	**		65.02 %	78.48 %	57.87 %	0.08 s	Titan X (pascal)	
4	<u>MV3D</u>	***		62.35 %	71.09 %	55.12 %	0.36 s	GPU @ 2.5 Ghz (Python + C/C++)	
X. Che	en, H. Ma, J. Wan, B. I	Li and T. Xia: <u>M</u> u	ulti-View 31	O Object Detection	n Network for Au	utonomous Drivi	ng. CVPR 2017.		
5	<u>MV3D (LIDAR)</u>	*** ***		52.73 %	66.77 %	51.31 %	0.24 s	GPU @ 2.5 Ghz (Python + C/C++)	
X. Che	en, H. Ma, J. Wan, B. I	Li and T. Xia: <u>M</u>	ulti-View 31	O Object Detection	n Network for Au	utonomous Drivi	ng. CVPR 2017.		
6	F-PC_CNN	***		42.67 %	50.46 %	40.15 %	0.5 s	GPU @ 3.0 Ghz (Matlab + C/C++)	
7	<u>SDN</u>	•••		21.36 %	34.05 %	18.59 %	0.07 s	GPU @ 1.5 Ghz (Python)	
8	LMNetV2	•••		15.24 %	14.75 %	12.85 %	0.02 s	GPU @ 2.5 Ghz (C/C++)	
9	<u>3dSSD</u>			14 .97 %	14.71 %	19.43 %	0.03 s	GPU @ 2.5 Ghz (Python + C/C++)	
10	LMnet	***		9.19 %	11.32 %	9.19 %	0.1 s	GPU @ 1.1 Ghz (Python + C/C++)	

Our method ranks No. 1 on KITTI 3D Object Detection Benchmark

We are also 1st place for smaller objects (ped. and cyclist) winning with even bigger margins.

	Method	Setting	Code	<u>Moderate</u>	Easy	Hard	Runtime	Environment	Compare
1	F-PointNet			44.89 %	51.21 %	40.23 %	0.17 s	GPU @ 3.0 Ghz (Python)	
2	<u>VxNet(LiDAR)</u>	::		33.69 %	39.48 %	31.51 %	0.23 s	GPU @ 2.5 Ghz (Python + C/C++)	
3	AVOD			25.87 %	32.67 %	25.01 %	0.08 s	Titan X (pascal)	
			·,,						
4 <u>yc</u>	<u>adssp</u>			17.35 %	20.22 %	17.20 %	0.03 s	GPU @ 2.5 Ghz (Python + C/C++)	
4 <u>yc</u>	<u>3dSSD</u> <u>clist</u> Method	Setting	Code	17.35 %	20.22 %	17.20 %	0.03 s Runtime	GPU @ 2.5 Ghz (Python + C/C++) Environment	Compare
4 yc 1	<u>3dSSD</u> Clist Method F-PointNet	Setting E	Code	17.35 % <u>Moderate</u> 56.77 %	20.22 % Easy 71.96 %	17.20 % • Hard 50.39 %	0.03 s Runtime 0.17 s	GPU @ 2.5 Ghz (Python + C/C++) Environment GPU @ 3.0 Ghz (Python)	Compare
4 <u>yc</u> 1	<u>3dSSD</u> Clist Method <u>F-PointNet</u> <u>VxNet(LiDAR)</u>	Setting E	Code	17.35 % <u>Moderate</u> 56.77 % 48.36 %	20.22 % Easy 71.96 % 61.22 %	17.20 % • • Hard 50.39 % 44.37 %	0.03 s Runtime 0.17 s 0.23 s	GPU @ 2.5 Ghz (Python + C/C++) Environment GPU @ 3.0 Ghz (Python) GPU @ 2.5 Ghz (Python + C/C++)	Compare

Dodoctrian

Frustum-based 3D Object Detection

Challenges:

- Occlusions and clutters are common in frustum point cloud.
- Largely varying ranges of points in frustums.

Frustum PointNets

RGB imagdDepth

Input: RGB-D data

Hao Su

Image region proposal

Frustum Proposal

Input: RGB-D data

Image region proposal

2D-3D lifting from depth map

Input: RGB-D data

Image region proposal

2D-3D lifting from depth map

Frustum point cloud extraction

3D Instance Segmentation in Frustums

Localize object in frustum by point cloud segmentation.

3D Instance Segmentation in Frustums

Input: frustum point cloud

3D Instance Segmentation in Frustums

Input: frustum point cloud Point cloud binary segmentation with PointNet: object of interest v.s. others

Amodal 3D Box Estimation

Estimate 3D bounding boxes from segmented object point clouds.

Amodal 3D Box Estimation

Input: object point cloud

Amodal 3D Box Estimation

Input: object point cloud

A regression PointNet estimates amodal 3D bounding box for the object

Frustum PointNets

In comparison with Mask R-CNN Mask R-CNN: 2D box -> 2D segmentation Frustum PointNets: 2D box -> 3D frustum -> 3D segmentation -> 3D amodal box

Frustum PointNets: Key to our Success

- **Representation.** We use PointNets for 3D estimation in raw point clouds.
- **Coordinates Normalization.** A series of coordinate transformations canonicalize the learning problems.
- Loss function. We design specialized loss functions for 3D bounding box regression.

Frustum PointNets: Key to our Success

- **Representation.** We use PointNets for 3D estimation in raw point clouds.
- Coordinates Normalization. A series of coordinate transformations canonicalize the learning problems.
- Loss function. We design specialized loss functions for 3D bounding box regression.

Representation Matters

Baseline by 2D Mask RCNN

Representation Matters

Baseline by 2D Mask RCNN Ours

Hao Su

Frustum PointNets: Key to our Success

- **Representation.** We use PointNets for 3D estimation in raw point clouds.
- Coordinates Normalization. A series of coordinate transformations canonicalize the learning problems.
- Loss function. We design specialized loss functions for 3D bounding box regression.

Hao Su

Hao Su

Table 7. Effects of point cloud normalization. Metric is 3D box estimation accuracy with IoU=0.7.

PointNet v2.0: Multi-Scale PointNet

- 1. Larger receptive field in higher layers
- 2. Less points in higher layers (more scalable)
- 3. Weight sharing
- 4. Translation invariance (local coordinates in local regions)

Frustum PointNets: Key to our Success

- **Representation.** We use PointNets for 3D estimation in raw point clouds.
- Coordinates Normalization. A series of coordinate transformations canonicalize the learning problems.
- Loss function. We design specialized loss functions for 3D bounding box regression.

Qualitative Results (on KITTI and SUN-RGBD)

Hao Su

Remarkable box estimation accuracy even with a dozen of points or with very partial point cloud

Hao Su

Hao Su

Image features could help.

Missing 2D detection results in no 3D detection

Multiple ways for proposal could help (e.g. bird's eye view, multiple 2D proposal networks)

Hao Su

Strong occlusion. Just 4 LiDAR points..

Challenging case for instance segmentation (multiple closeby objects in a single frustum)

Missed 2D detectio in a complicated scene with strong occlusions

Challenging segmentation case

Lecture 9 - 73

Hao Su

Lecture 9 - 74

Image D detection		
(21		

	bathtub	bed	bookshelf	chair	desk	dresser	nightstand	sofa	table	toilet	Runtime	mAP
DSS [35]	44.2	78.8	11.9	61.2	20.5	6.4	15.4	53.5	50.3	78.9	19.55s	42.1
COG [30]	58.3	63.7	31.8	62.2	45.2	15.5	27.4	51.0	51.3	70.1	10-30min	47.6
2D-driven [16]	43.5	64.5	31.4	48.3	27.9	25.9	41.9	50.4	37.0	80.4	4.15s	45.1
Ours (v1)	43.3	81.1	33.3	64.2	24.7	32.0	58.1	61.1	51.1	90.9	0.12s	54.0

Table 5. **3D object detection AP on SUN-RGBD val set.** Evaluation metric is average precision with 3D IoU threshold 0.25 as proposed by [33]. Note that both COG [30] and 2D-driven [16] use room layout context to boost performance while ours and DSS [35] not. Compared with previous state-of-the-arts our method is 6.4% to 11.9% better in mAP as well as one to three orders of magnitude faster.

Opening in my Lab for Shape Processing

- Task: to make ShapeNet amiable for machine learning researchers (ShapeNet v2.0)
- You will gain a lot of experience for geometry processing
- Not much research into machine learning in the beginning, though, but
 - Can attend my group meetings
 - May have the opportunity to work on learning stuff in the future
 - Acknowledged as in the ShapeNet team
- Requirement:
 - Very strong programming ability
 - Past CG experience
 - Master thesis topic