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Deep neural network
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Universal function approximator
x

• A cascade of layers
• Each layer conducts a simple transformation (parameterized)
• Millions of parameters, has to be fitted by many data

outputinput

hidden layers

… …

CVPR ’17, Point Set Generation
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Natural statistics of geometry
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• Many local structures are common
• e.g., planar patches, cylindrical patches
• strong local correlation among point coordinates

• Also some intricate structures
• points have high local variation

CVPR ’17, Point Set Generation
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Review: deconv network
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• Output   D arrays, e.g., 2D segmentation map
• Common local patterns are learned from data
• Predict locally correlated data well
• Weight sharing reduces the number of params

Credit: FCNN, Long et al.

Deconv network for image segmentation

n
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Review: deconv network
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• Output   D arrays, e.g., 2D segmentation map
• Common local patterns are learned from data
• Predict locally correlated data well
• Weight sharing reduces the number of params

Credit: FCNN, Long et al.

Deconv network for image segmentation

n

How to predict curved 
surfaces in 3D?
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• Surface parametrization (2D     3D mapping)

Credit: Discrete Differential Geometry, Crane et al.
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Prediction of curved 2D surfaces in 3D
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• Surface parametrization (2D-3D mapping)

Credit: Discrete Differential Geometry, Crane et al.

x-map

y-map

z-map

coordinate maps
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Parametrization prediction by deconv network
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Capture intricate structures

Parametrization prediction by deconv network
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• The parametrization (2D/3D mapping) is learned from data
• i.e., obtains a network and data friendly parametrization

Capture common structures
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Visualization of the learned parameterization
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map of x coord

Observation:
• Learns a smooth parametrization
• Because deconv net tends to predict data with 

local correlation
(xk, yk, zk)

map of y coord map of z coord

• Surface parametrization (2D     3D mapping)
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Observation:
• Learns a smooth parametrization
• Because deconv net tends to predict data with 

local correlation

Visualization of the learned parameterization
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• Surface parametrization (2D     3D mapping)

(xk, yk, zk)

map of x coord map of y coord map of z coord



1/30/2018    Hao Su                                                 Lecture      -8 27



1/30/2018

Natural statistics of geometry
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• Many local structures are common
• e.g., planar patches, cylindrical patches
• strong local correlation among point coordinates

• Also some intricate structures CVPR ’17, Point Set Generation



1/30/2018

Pipeline

    Hao Su                                                 Lecture      -8 29

CVPR ’17, Point Set Generation

Loss
on

sets

sampl
e

(L)

conv

... 
FC

branch

... 

deconv
Capture common 

Capture intricate 



1/30/2018

Pipeline

    Hao Su                                                 Lecture      -8 30

CVPR ’17, Point Set Generation

sampl
e

(L)

conv

... ... 

deconv

fc

dense
dense …

 

Capture common 

Capture intricate 

Loss
on

sets



1/30/2018

Pipeline

    Hao Su                                                 Lecture      -8 31

CVPR ’17, Point Set Generation

sampl
e

(L)

conv

... ... 

deconv

fc

dense
dense …

 

• Points are predicted 
independently

• Dense connection introduces 

Capture common 

Capture intricate 

Loss
on

sets



1/30/2018

Visualization of the effect of FC branch
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• Surface parametrization (2D     3D mapping)

x-coord y-coord z-coord

Observation:
• The arrangement of predicted points are 

uncorrelated

red
CVPR ’17, Point Set Generation
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Visualization of the effect of FC branch
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• Surface parametrization (2D     3D mapping)

x-coord y-coord z-coord

Observation:
• The arrangement of predicted points are 

uncorrelated
• Located at fine structures

red
CVPR ’17, Point Set Generation
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Q: Which color corresponds to the deconv branch? 
FC branch?
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CVPR ’17, Point Set Generation
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Q: Which color corresponds to the deconv branch? 
FC branch?
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blue: deconv branch – large, smooth structures
red: FC branch – intricate structures

CVPR ’17, Point Set Generation



1/30/2018

Effect of combining two branches
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Real-world results

    Hao Su                                                 Lecture      -8 37

input observed view   input observed view  
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Generalization to unseen categories
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input observed view   input observed view  

Out of training categories CVPR ’17, Point Set Generation
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Extension: shape completion for RGBD data
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view of input90�RGBD map (input) output: completed point cloud
CVPR ’17, Point Set Generation
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Open problems
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A better metric that takes the best of Chamfer and EMD? 

How to add further structure constraints? 

How to extend the pipeline to scene level? 

How generalizable the method is?  

In principle, what is the generalizability of a geometry estimator? 
To what extend is 3D perception ability innate or learned? 
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• Supervised Point Set Generation (cont)
• Multidimensional Scaling
• Parametric Shape Space for Homotopic Manifolds
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Embedding / Sketching
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• Definition: an embedding is a map f:M→H of a metric (M, dM) into a 
host metric (H, ρH) such that for any x,y∈M: 

 dM(x,y) ≤ t ρH(f(x), f(y)) ≤ D * dM(x,y) 

where D is the distortion (approximation) of the embedding f. 

• Embeddings can be randomized: ρH(f(x), f(y)) ≈ dM(x,y) with 1-δ 
probability 

• Types of embeddings: 
• From a norm (ℓ1) into another norm (ℓ∞) 
• From norm to the same norm but of lower dimension (dimension 

reduction) 
• From non-norms (Earth-Mover Distance, edit distance) into a norm 
• From given finite metric (shortest path on a planar graph) into a 

norm 
[slide credit: Alexandr Andoni]
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Distances and Dimensionality

    Hao Su                                                 Lecture      -8 43

• How do distances/dissimilarities determine 
dimensionality?
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Results for general metric space to    
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l1

http://www.cs.toronto.edu/~avner/teaching/S6-2414/LN1.pdf

http://www.cs.toronto.edu/~avner/teaching/S6-2414/LN1.pdf
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Example results for planar EMD embedding
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•  

[slide credit: Alexandr Andoni]

! Consider EMD on grid [Δ]x[Δ], and sets of size s

More: Sketching and Embedding are Equivalent for Norms  

https://arxiv.org/pdf/1411.2577.pdf
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Results for Euc. space (dimension reduction)
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Johnson–Lindenstrauss Flattening Lemma
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Multidimensional Scaling (MDS)
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• A “distance preserving” embedding of the data into a 
Euclidean space 
• Sometimes distances are observed directly (e.g., similarity ratings) 
• Sometimes they can be calculated from a data table (e.g., 

Euclidean distances, correlations)
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• Given a (symmetric) matrix of pairwise “dis-similarities” 
between n objects / data sets 

• Find  n  points in low-dimensional space Rd, so that their 
distance matrix is as close as possible to M 

• Low d (=2,3) allows us to visualize the data directly

Formally …
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( )ij n n
M δ

×
= No need to satisfy the 

triangle inequality
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MDS Has Many Uses

    Hao Su                                                 Lecture      -8 49

• Psychology (perception, 
cognition)

• Political science (voting 
behavior, court decisions)

• Sociology (social network 
analysis)

• Archeology (artifact 
similarity)

• Biology/Chemistry 
(molecular structure, 
species analysis)

• Document retrieval & 
classification 

• Graph layout 
• Pattern recognition 
• Dimension reduction 
• …
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Example: Pattern Recognition
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MDS of judged similarity of 
handwritten “2”s 

Goal: determine features 
important in pattern 
recognition
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Classic Metric MDS
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• Sometimes we can model our data as points in a high-
dimensional Euclidean space – and we are looking for an 
embedding to a lower-dimensional space that preserves 
(absolute or relative) distances (in the high-d space) as 
much as possible. 

• In this case the problem has a clean geometric solution.
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Classic Metric MDS
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• To go from dimension D down to dimension d 
• Given data X ∈ RD×n 

• We look for X’, 

• We can assume the xi’ are centered 
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M
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Classic Metric MDS
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• So that we minimize || M’ – M || (related to the stress of the 
system) 

• where  

• M’ is the Euclidean distances matrix for points xi’. 

( )
2

2dist ( , ) n nM R ×⎛ ⎞ʹ ʹ ʹ ʹʹ = = − ∈⎜ ⎟
⎝ ⎠

i j i jx x x x



1/30/2018

The Math Details
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The Magic Matrix J
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So We Get to The Gram Matrix
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Cleaning the system: 

So from the distance matrix we can get the Gram (inner 
product) matrix.

2
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And Finally the Spectral Hammer

We will use the spectral decomposition of B:
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So We Get the X’
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1
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So we find X’ by throwing away the last n−d eigenvalues

For this X’ :

This choice minimizes the 
inner product (and distance) loss
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More General Metric MDS
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• In general, we minimize directly the square loss on distances 

• Sammon mapping 

• This weighting system normalizes the squared-errors in pairwise distances by using 
the distance in the original space. As a result, Sammon mapping preserves the 
small dij, giving them a greater degree of importance in the fitting procedure than for 
larger values of dij

Generally solved by gradient descent
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Agenda
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• Supervised Point Set Generation (cont)
• Multidimensional Scaling
• Parametric Shape Space for Homotopic Shapes
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Every point in the shape space is a “valid shape”?
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[Wu et al, Learning a Probabilistic Latent Space of Object Shapes  
via 3D Generative-Adversarial Modeling]
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Homotopy
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For continuous functions f and g from a topological space X to a 
topological space Y:
• f and g are homotopic iff here exists a continuous function H : X × [0,1] → 

Y, such that
H(x,0) = f(x) and H(x,1) = g(x).

https://en.wikipedia.org/wiki/Continuous_function_(topology)
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Homotopy
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Intuition: To construct the family of deformable shapes (face, body, etc.)


