

Lecture 8: Deep Learning on Point Cloud

Instructor: Hao Su

Feb 1, 2018

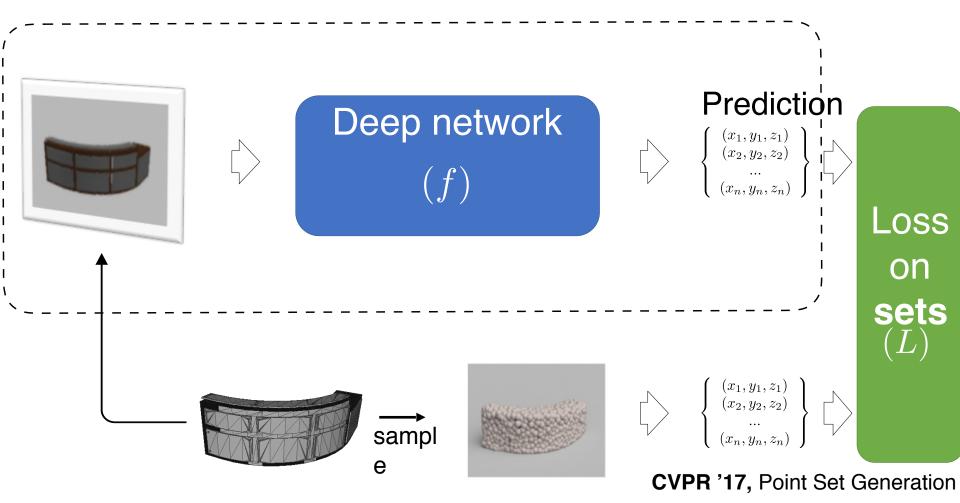
slides credits: Justin Solomon, Chengcheng Tang

Agenda

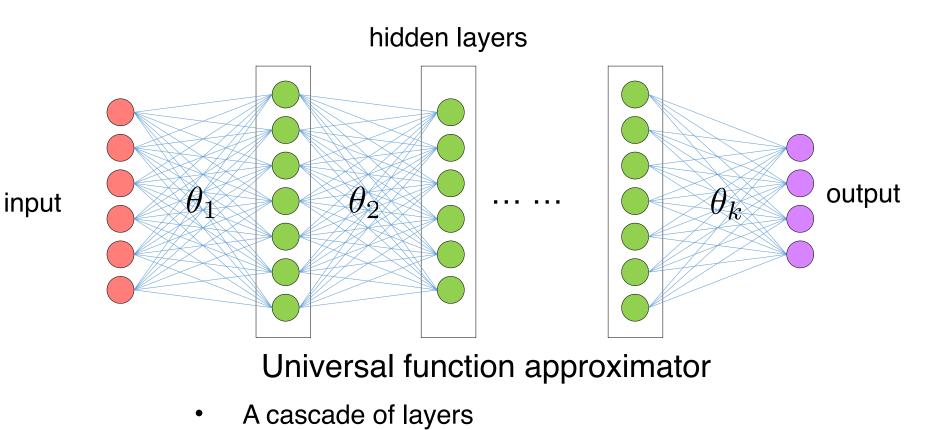
- Supervised Point Set Generation (cont)
- Multidimensional Scaling
- Parametric Shape Space for Homotopic Manifolds

Agenda

- Supervised Point Set Generation (cont)
- Multidimensional Scaling
- Parametric Shape Space for Homotopic Manifolds



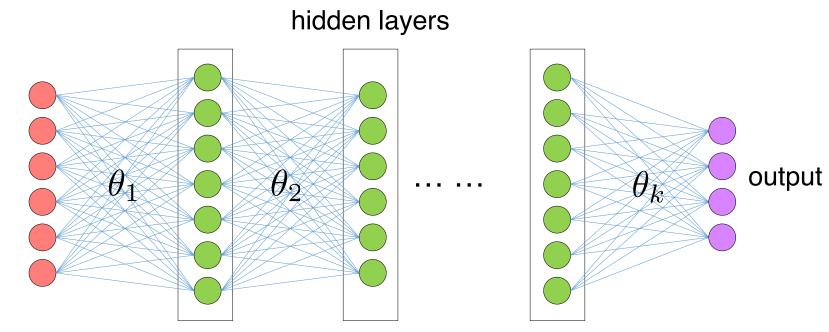
Deep neural network



CVPR '17, Point Set Generation

Hao Su

Deep neural network



Universal function approximator

• A cascade of layers

input

Hao Su

 Each layer conducts a simple transformation (parameterized) CVPR '17, Point Set Generation

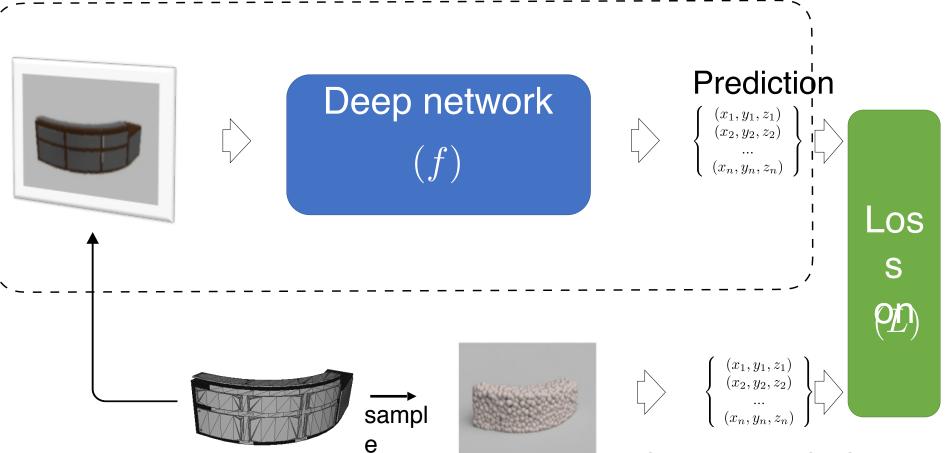
Deep neural network



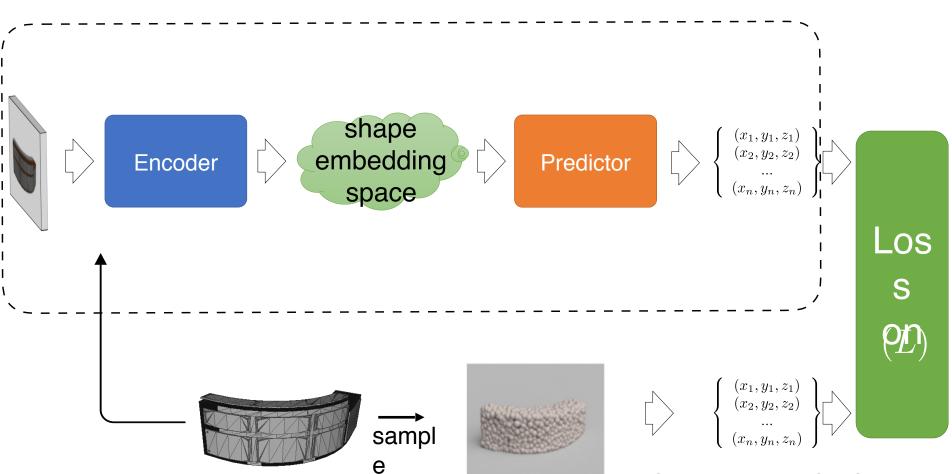
Universal function approximator

- A cascade of layers
- Each layer conducts a simple transformation (parameterized)
- Millions of parameters, has to be fitted by Many data int Set Generation

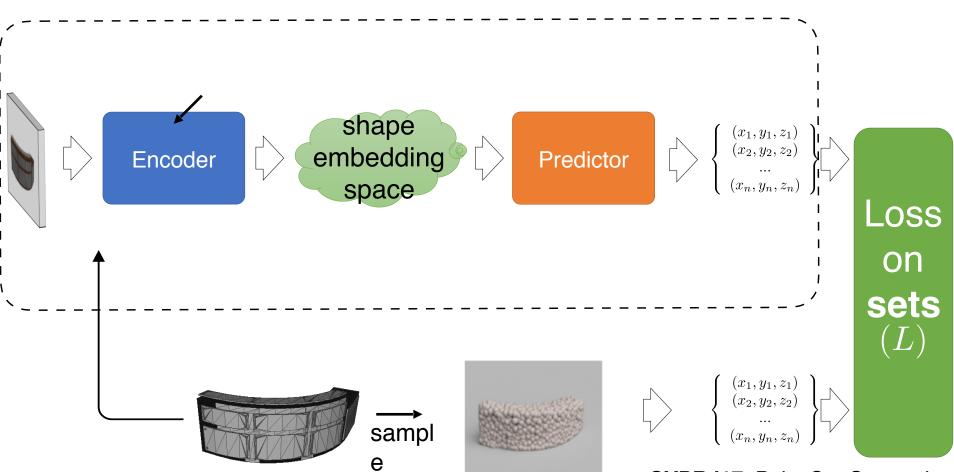
input



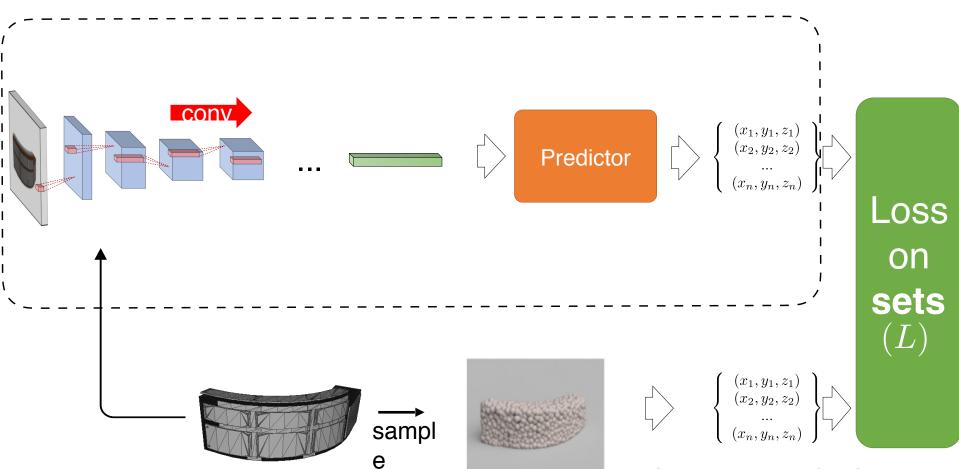
CVPR '17, Point Set Generation



CVPR '17, Point Set Generation

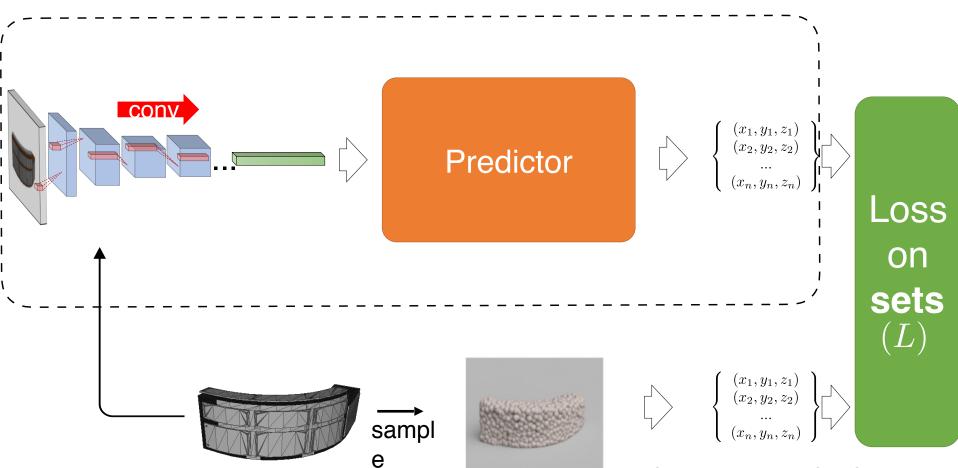


CVPR '17, Point Set Generation



CVPR '17, Point Set Generation

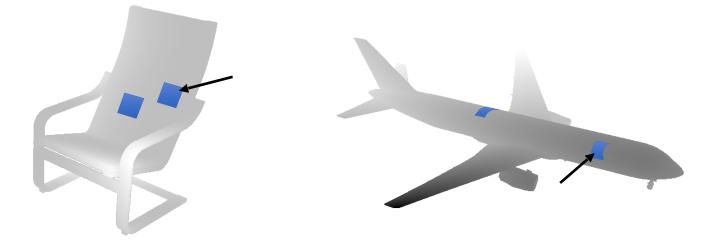
Hao Su



CVPR '17, Point Set Generation

Hao Su

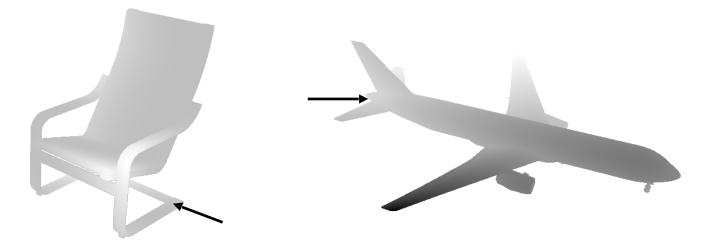
Natural statistics of geometry



- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates

CVPR '17, Point Set Generation

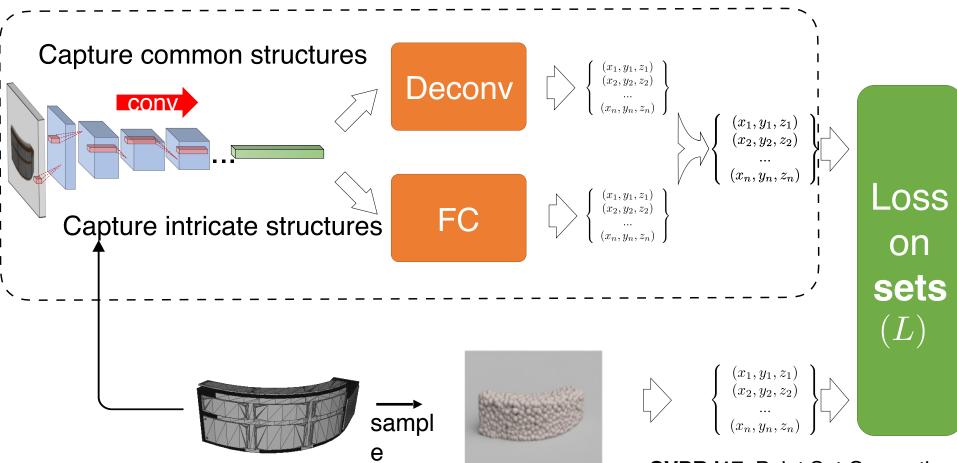
Natural statistics of geometry



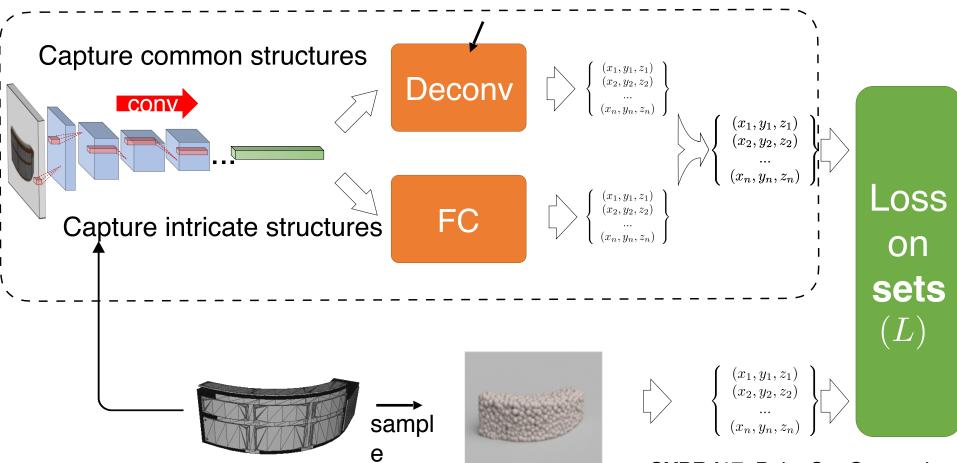
- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates
- Also some intricate structures

CVPR '17, Point Set Generation

points have high local variation



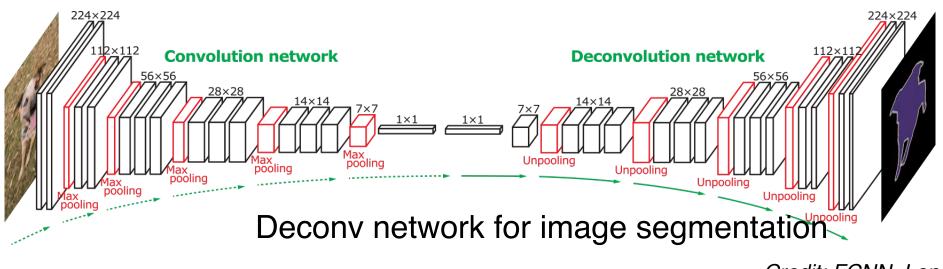
CVPR '17, Point Set Generation



CVPR '17, Point Set Generation

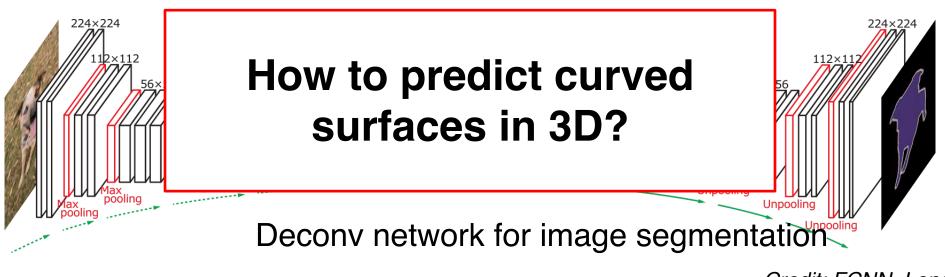
Review: deconv network

- Output D arrays, e.g., 2D segmentation map
- Common local patterns are learned from data
- Predict locally correlated data well
- Weight sharing reduces the number of params



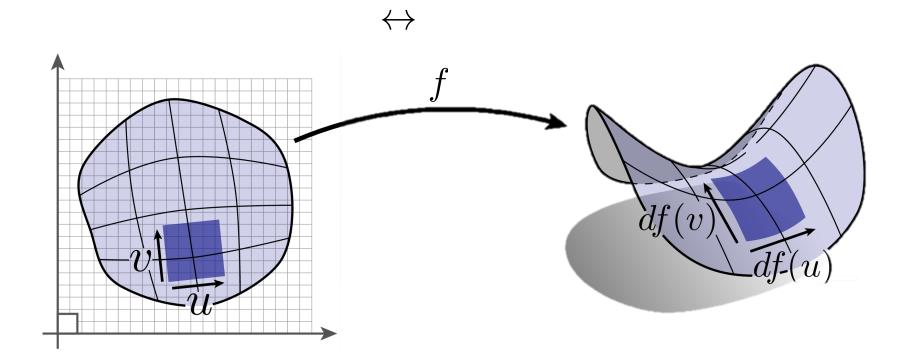
Review: deconv network

- Output D arrays, e.g., 2D segmentation map
- Common local patterns are learned from data
- Predict locally correlated data well
- Weight sharing reduces the number of params



Prediction of curved 2D surfaces in 3D

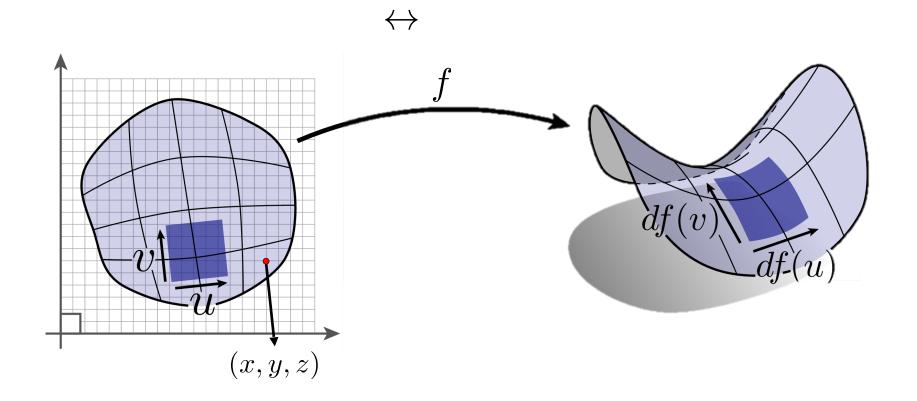
• Surface parametrization (2D 3D mapping)



Credit: Discrete Differential Geometry,

Prediction of curved 2D surfaces in 3D

• Surface parametrization (2D 3D mapping)

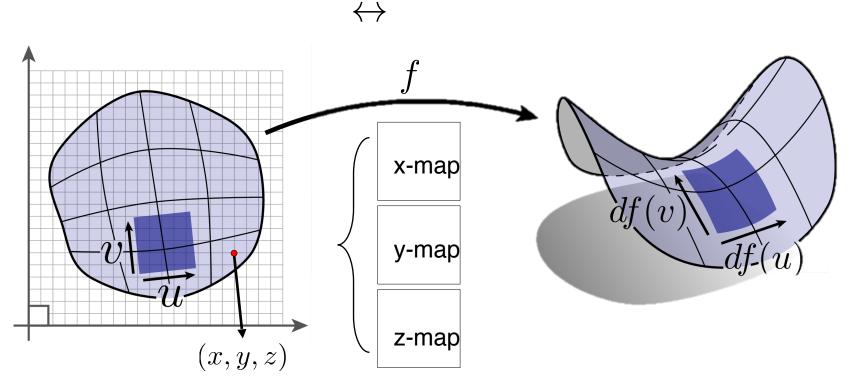


Credit: Discrete Differential Geometry,

Hao Su

Prediction of curved 2D surfaces in 3D

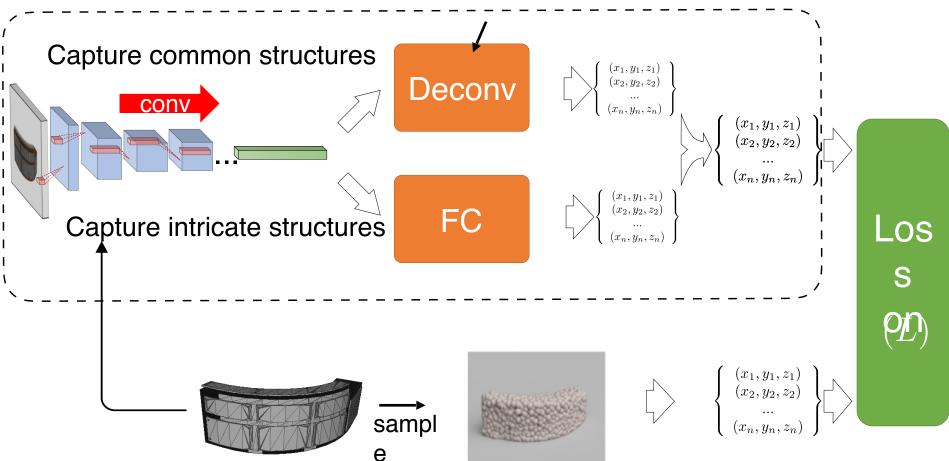
Surface parametrization (2D-3D mapping)



coordinate maps

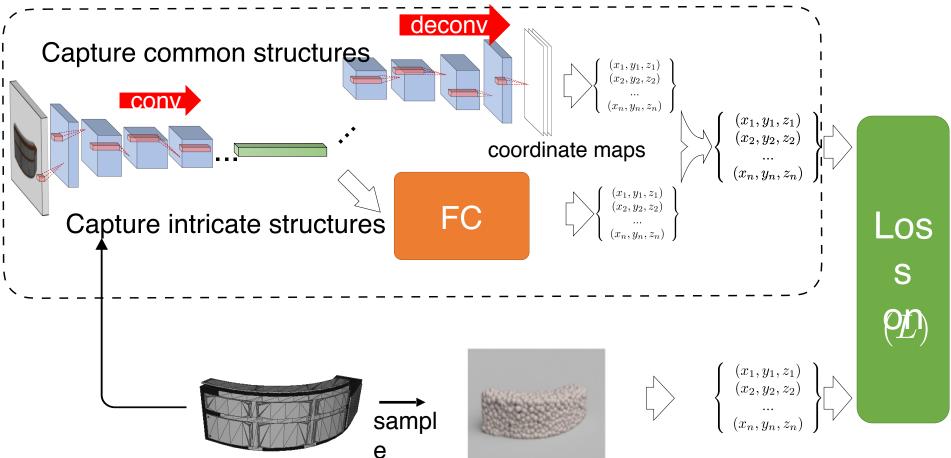
Credit: Discrete Differential Geometry, Crane et al.

Parametrization prediction by deconv network



CVPR '17, Point Set Generation

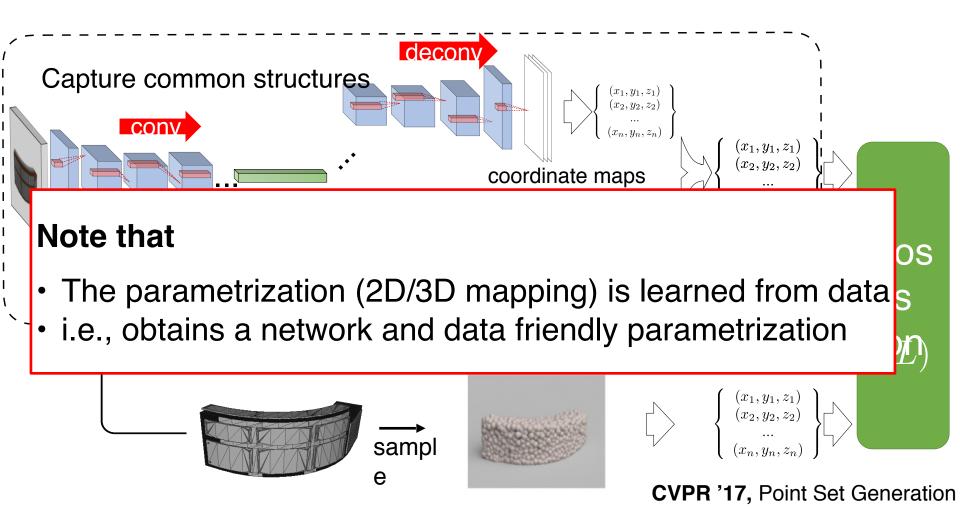
Parametrization prediction by deconv network



CVPR '17, Point Set Generation

Hao Su

Parametrization prediction by deconv network

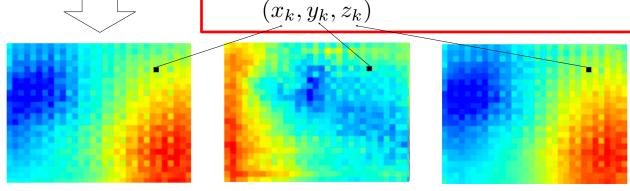


Visualization of the learned parameterization

• Surface parametrization (2D 3D mapping)

Observation:

- Learns a smooth parametrization
- Because deconv net tends to predict data with local correlation



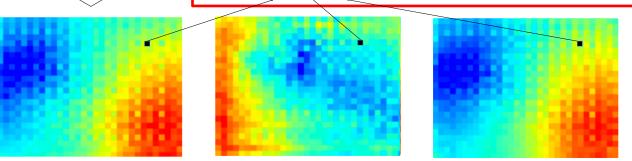
map of x coord map of y coord map of z coord

Visualization of the learned parameterization

• Surface parametrization (2D 3D mapping)

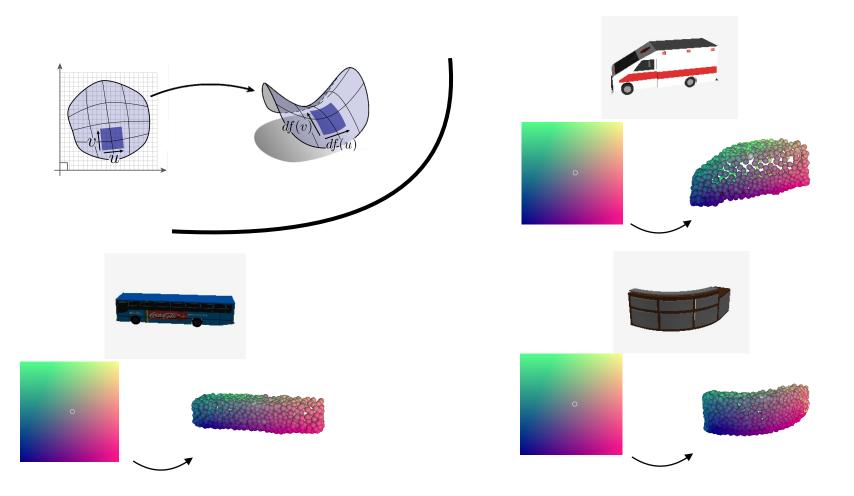
Observation:

- Learns a smooth parametrization
- Because deconv net tends to predict data with local correlation



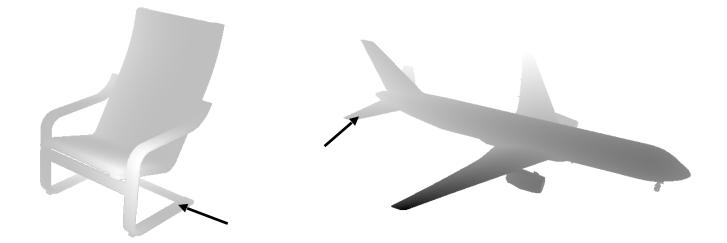
 (x_k, y_k, z_k)

map of x coord map of y coord map of z coord



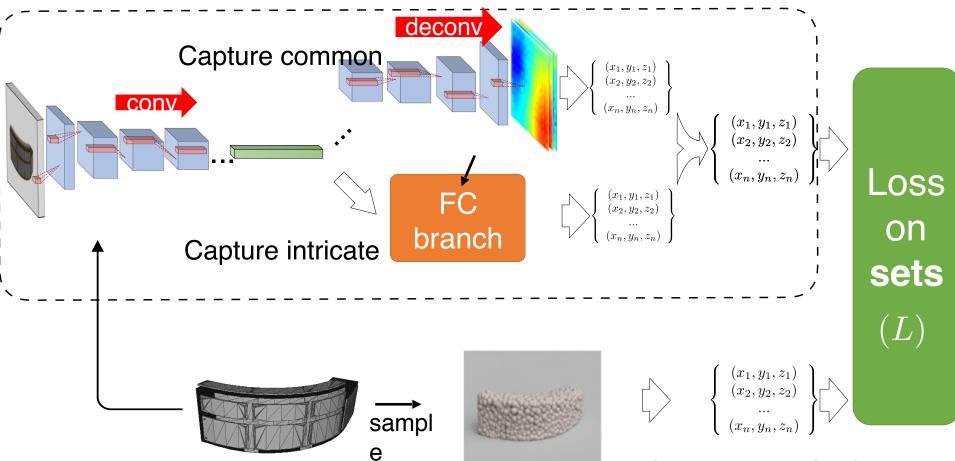
Hao Su

Natural statistics of geometry

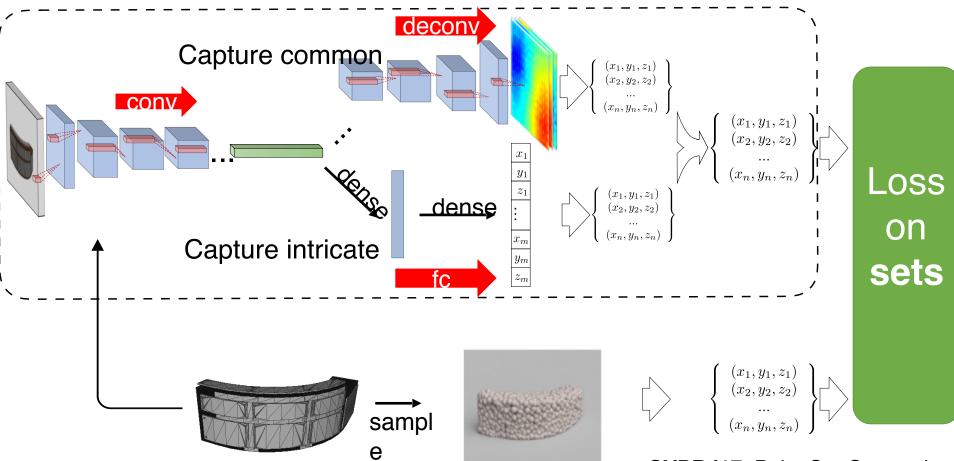


- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates
- Also some intricate structures

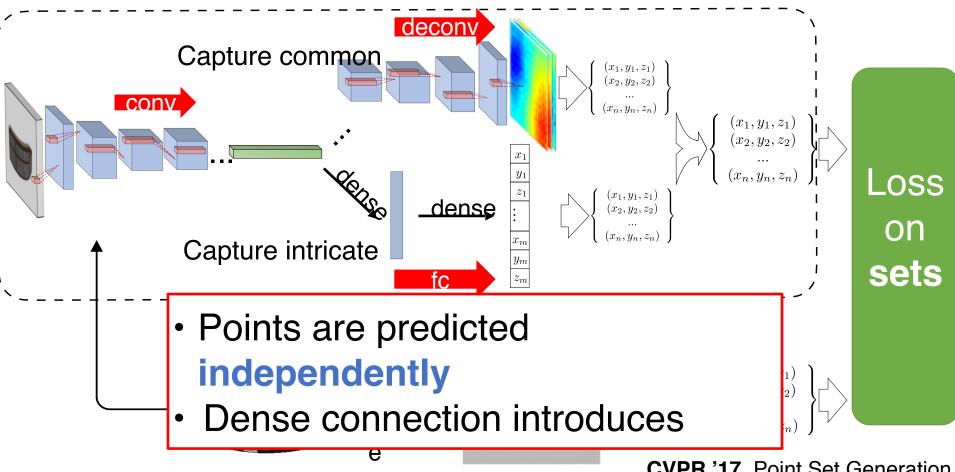
CVPR '17, Point Set Generation



CVPR '17, Point Set Generation



CVPR '17, Point Set Generation

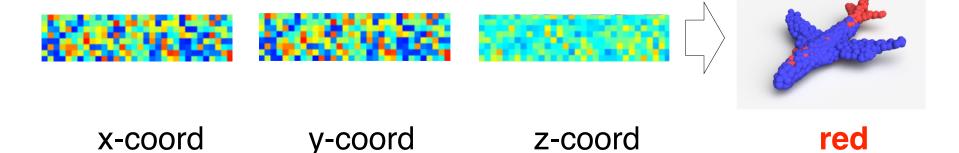


Visualization of the effect of FC branch

• Surface parametrization (2D 3D mapping)

Observation:

 The arrangement of predicted points are uncorrelated



CVPR '17, Point Set Generation

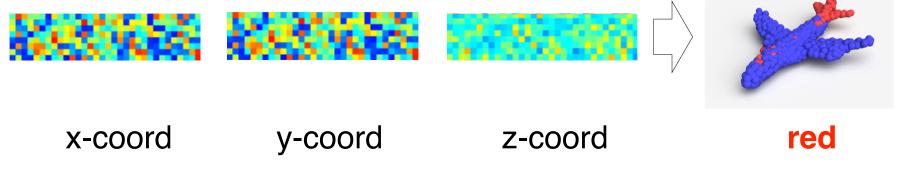
Visualization of the effect of FC branch

• Surface parametrization (2D 3D mapping)

and o

Observation:

- The arrangement of predicted points are uncorrelated
- Located at fine structures



CVPR '17, Point Set Generation

Q: Which color corresponds to the deconv branch? FC branch?

CVPR '17, Point Set Generation

Lecture 8 - 34

Hao Su

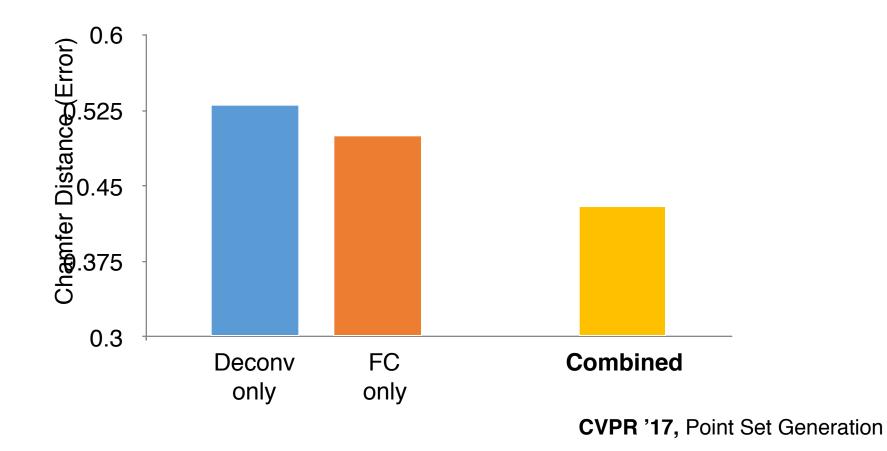
Q: Which color corresponds to the deconv branch? FC branch?

blue: deconv branch - large, smooth structures red: FC branch - intricate structures

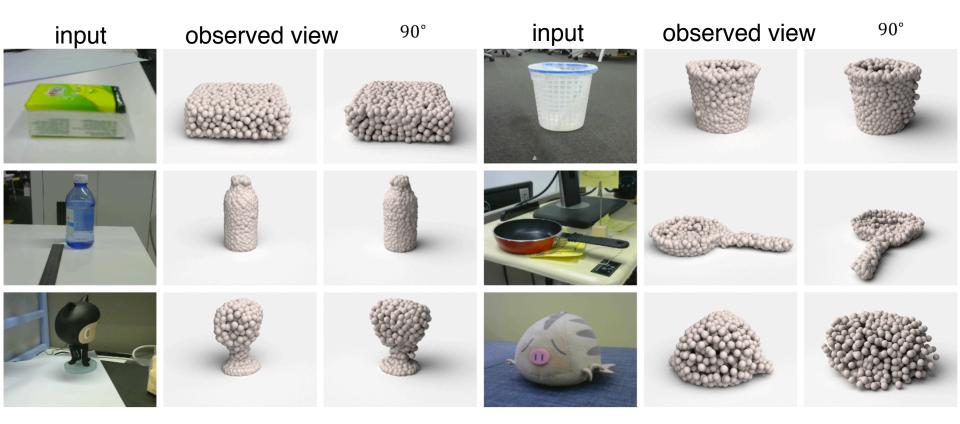
CVPR '17, Point Set Generation

Effect of combining two branches

Train/tested on 2K object categories



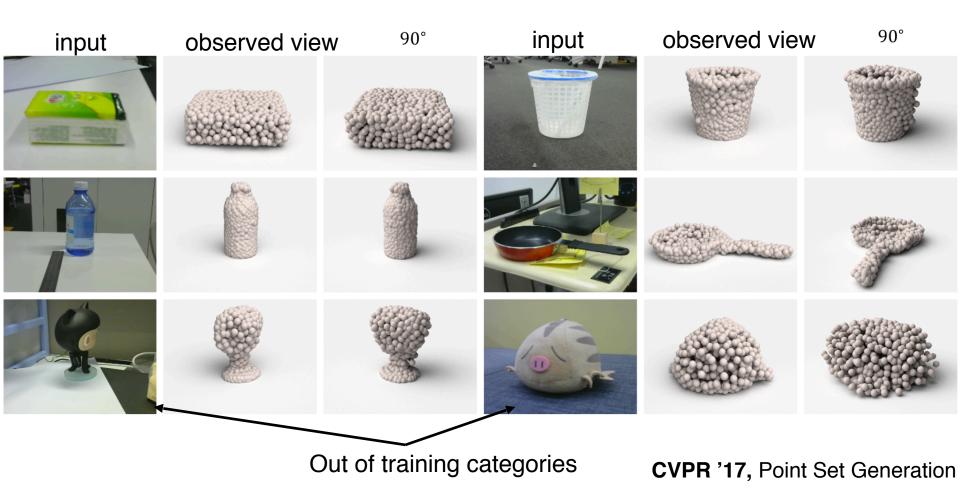
Real-world results



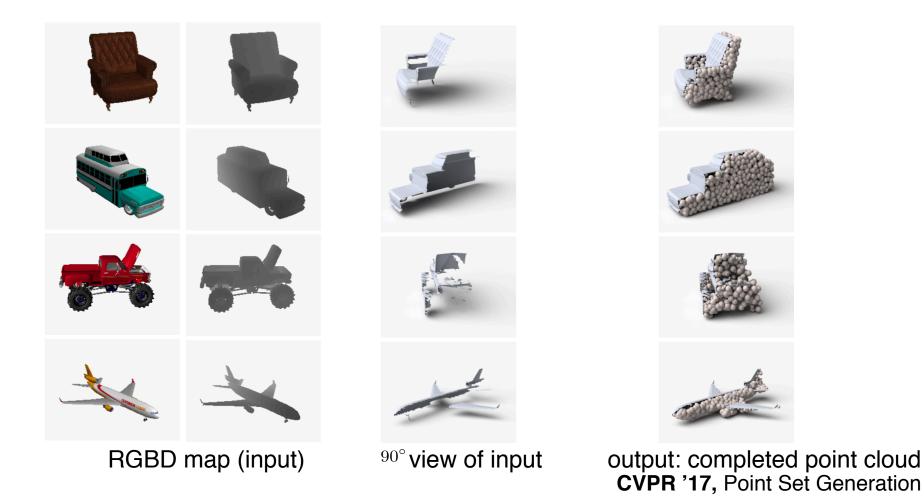
CVPR '17, Point Set Generation

Hao Su

Generalization to unseen categories



Extension: shape completion for RGBD data



Open problems

A better metric that takes the best of Chamfer and EMD?

How to add further structure constraints?

How to extend the pipeline to scene level?

How generalizable the method is?

In principle, what is the generalizability of a geometry estimator? To what extend is 3D perception ability innate or learned?

Agenda

- Supervised Point Set Generation (cont)
- Multidimensional Scaling
- Parametric Shape Space for Homotopic Manifolds

Embedding / Sketching

Definition: an embedding is a map f:M→H of a metric (M, d_M) into a host metric (H, ρ_H) such that for any x,y∈M:

 $d_{\mathsf{M}}(x,y) \leq t \ \rho_{\mathsf{H}}(\mathsf{f}(x),\ \mathsf{f}(y)) \leq \mathsf{D}^{*} \ d_{\mathsf{M}}(x,y)$

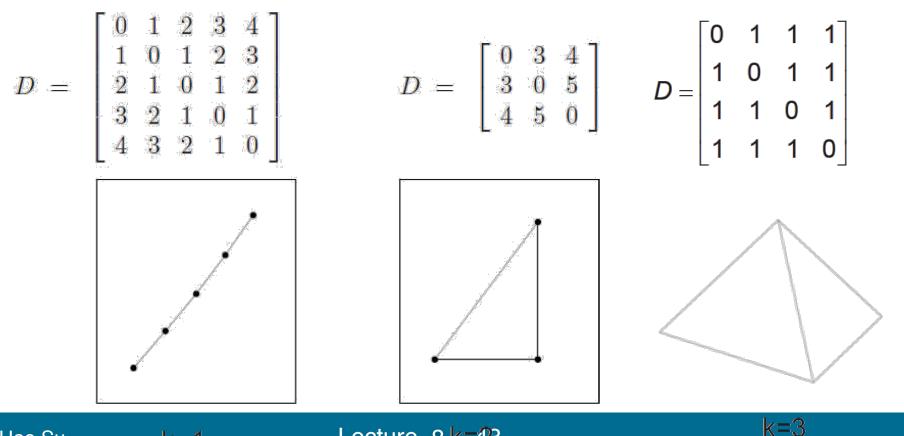
where **D** is the distortion (approximation) of the embedding **f**.

- Embeddings can be randomized: ρ_H(f(x), f(y)) ≈ d_M(x,y) with 1-δ probability
- Types of embeddings:
 - From a norm (l_1) into another norm (l_{∞})
 - From norm to the same norm but of *lower dimension* (dimension reduction)
 - From non-norms (Earth-Mover Distance, edit distance) into a norm
 - From given finite metric (shortest path on a planar graph) into a norm

[slide credit: Alexandr Andoni]

Distances and Dimensionality

How do distances/dissimilarities determine dimensionality?



Hao Su

k=1

Results for general metric space to l_{∞}

Theorem 2.7. Every metric space embeds isometrically into ℓ_{∞} .

Proof. We will prove this lemma only for finite metric spaces. Consider a metric space (X, d), where $X = (x_1, \ldots, x_n)$. It suffices to find a function $f : X \to \mathbb{R}_n$ such that (X, d) embeds isometrically into $(\mathbb{R}_n, \|\cdot\|)$. For $x_i \in X$ we define

$$f(x_i) = (d(x_1, x_i), d(x_2, x_i), \dots, d(x_n, x_i))$$

Clearly it suffices to show for every $x_i, x_j \in X$ that $||f(x_i) - f(x_j)||_{\infty} = d(x_i, x_j)$. First we note that since d is a metric, it respects the \triangle -inequality, thus $d(x_i, x_k) - d(x_j, x_k) \leq d(x_i, x_j)$ for $k = 1, \ldots n$. It follows that

$$\max_{k} |d(x_i, x_k) - d(x_j, x_k)| \le d(x_i, x_j),$$

or in other words

$$||f(x_i) - f(x_j)||_{\infty} \le d(x_i, x_j).$$
 (1)

On the other hand, the *j*-th coordinate of the vector $f(x_i) - f(x_j)$ is $d(x_j, x_i) - d(x_j, x_j) = d(x_i, x_j)$. Therefore the maximum coordinate of $f(x_i) - f(x_j)$ is at least $d(x_i, x_j)$ or in other words

$$\|f(x_i) - f(x_j)\|_{\infty} \ge d(x_i, x_j).$$
 (2)

The lemma follows then from (1) and (2).

http://www.cs.toronto.edu/~avner/teaching/S6-2414/LN1.pdf

Example results for planar EMD embedding

• Consider EMD on grid $[\Delta]x[\Delta]$, and sets of size s

 Theorem [Cha02, IT03]: Can embed EMD over [Δ]² into ^l₁ with distortion O(log Δ). Time to embed a set of s points: O(s log Δ).

More: Sketching and Embedding are Equivalent for Norms

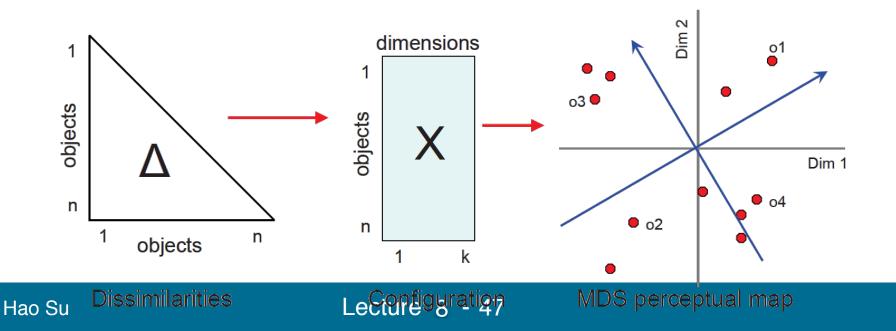
Results for Euc. space (dimension reduction)

Johnson–Lindenstrauss Flattening Lemma

Given $0 < \varepsilon < 1$, a set X of m points in \mathbb{R}^N , and a number $n > 8 \ln(m) / \varepsilon^2$, there is a linear map $f : \mathbb{R}^N \to \mathbb{R}^n$ such that $(1 - \varepsilon) \|u - v\|^2 \le \|f(u) - f(v)\|^2 \le (1 + \varepsilon) \|u - v\|^2$ for all $u, v \in X$.

Multidimensional Scaling (MDS)

- A "distance preserving" embedding of the data into a Euclidean space
 - Sometimes distances are observed directly (e.g., similarity ratings)
 - Sometimes they can be calculated from a data table (e.g., Euclidean distances, correlations)



Formally ...

• Given a (symmetric) matrix of pairwise "dis-similarities" between *n* objects / data sets

$$M = \left(\delta_{ij}\right)_{n \times n}$$

No need to satisfy the triangle inequality

- Find *n* points in low-dimensional space *R*^{*d*}, so that their distance matrix is as close as possible to *M*
- Low *d* (=2,3) allows us to visualize the data directly

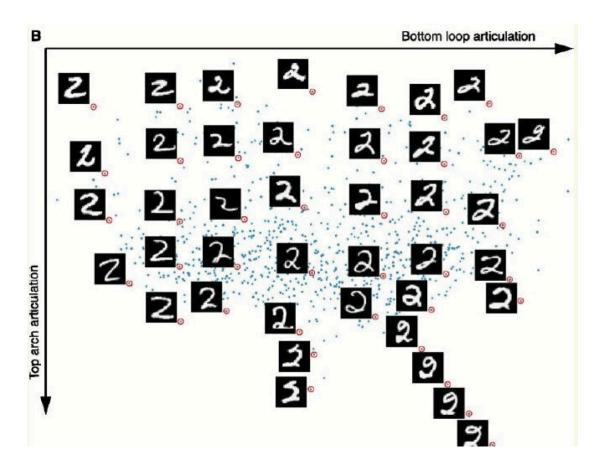
MDS Has Many Uses

- Psychology (perception, cognition)
- Political science (voting behavior, court decisions)
- Sociology (social network analysis)
- Archeology (artifact similarity)
- Biology/Chemistry (molecular structure, species analysis)

- Document retrieval & classification
- Graph layout
- Pattern recognition
- Dimension reduction

• ...

Example: Pattern Recognition



MDS of judged similarity of handwritten "2"s

Goal: determine features important in pattern recognition

Classic Metric MDS

- Sometimes we can model our data as points in a highdimensional Euclidean space – and we are looking for an embedding to a lower-dimensional space that preserves (absolute or relative) distances (in the high-d space) as much as possible.
- In this case the problem has a clean geometric solution.

Classic Metric MDS

- To go from dimension D down to dimension d
- Given data $X \in R^{D \times n}$

 $X = \begin{pmatrix} | & | & | \\ \mathbf{x}_{1} & \mathbf{x}_{2} & \dots & \mathbf{x}_{n} \\ | & | & | \end{pmatrix} \text{ and } M = \left(\operatorname{dist}^{2}(\mathbf{x}_{i}, \mathbf{x}_{j})\right)_{n \times n}$ • We look for X', $X' = \begin{pmatrix} | & | \\ \mathbf{x}_{1}' & \dots & \mathbf{x}_{n}' \\ | & | \end{pmatrix} \in \mathbb{R}^{d \times n}$

• We can assume the \mathbf{x}_i , are centered

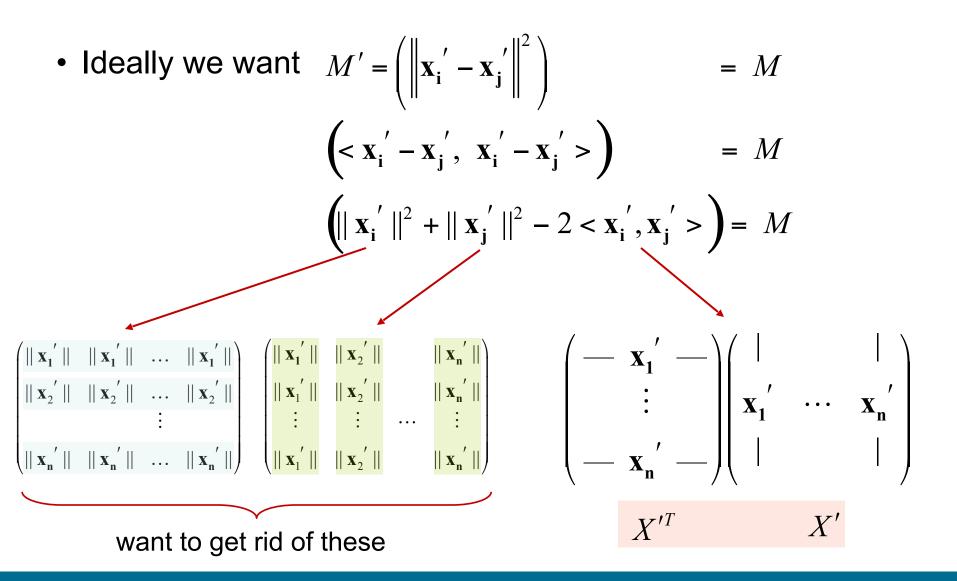
Classic Metric MDS

So that we minimize || M' – M || (related to the stress of the system)

• where
$$M' = \left(\operatorname{dist}^2(\mathbf{x}_i', \mathbf{x}_j') \right) = \left(\left\| \mathbf{x}_i' - \mathbf{x}_j' \right\|^2 \right) \in \mathbb{R}^{n \times n}$$

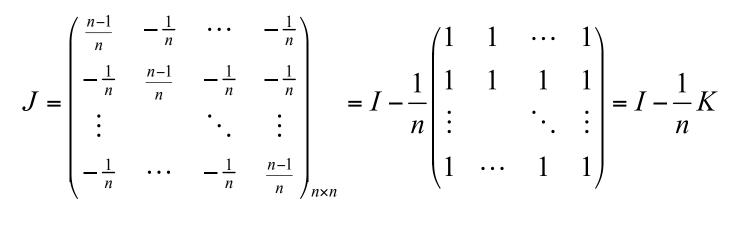
• *M*' is the Euclidean distances matrix for points x_i '.

The Math Details



Hao Su

The Magic Matrix J



$$\begin{pmatrix} a & a & \cdots & a \end{pmatrix} \cdot J = 0$$

$$J \cdot \begin{pmatrix} b \\ b \\ \vdots \\ b \end{pmatrix} = 0$$

Hao Su

So We Get to The Gram Matrix

Cleaning the system:

$$\times J / \begin{pmatrix} \| \mathbf{x}_{1}' \| & \| \mathbf{x}_{1}' \| & \dots & \| \mathbf{x}_{1}' \| \\ \| \mathbf{x}_{2}' \| & \| \mathbf{x}_{2}' \| & \dots & \| \mathbf{x}_{2}' \| \\ \vdots & \vdots & \ddots & \| \mathbf{x}_{1}' \| \\ \| \mathbf{x}_{n}' \| & \| \mathbf{x}_{n}' \| & \dots & \| \mathbf{x}_{n}' \| \end{pmatrix} + \begin{pmatrix} \| \mathbf{x}_{1}' \| & \| \mathbf{x}_{2}' \| & \| \| \mathbf{x}_{n}' \| \\ \| \mathbf{x}_{1}' \| & \| \mathbf{x}_{2}' \| & \dots & \| \mathbf{x}_{n}' \| \\ \vdots & \vdots & \dots & \vdots \\ \| \mathbf{x}_{n}' \| & \| \mathbf{x}_{n}' \| & \dots & \| \mathbf{x}_{n}' \| \end{pmatrix} + \begin{pmatrix} \| \mathbf{x}_{1}' \| & \| \mathbf{x}_{2}' \| & \| \| \mathbf{x}_{n}' \| \\ \| \mathbf{x}_{1}' \| & \| \mathbf{x}_{2}' \| & \| \| \mathbf{x}_{n}' \| \\ \| \mathbf{x}_{n}' \| & \| \mathbf{x}_{n}' \| \end{pmatrix} - 2X'^{T}X' = M / \times J$$

Note that $X'K = KX'^{T} = 0$, as X' is centered

$$X'^T X' = -\frac{1}{2}JMJ =: B$$

 $-2X'^TX' = JMJ$

 $X'^T X' = B$

So from the distance matrix we can get the Gram (inner product) matrix.

Hao Su

And Finally the Spectral Hammer

We will use the spectral decomposition of *B*:

$$X'^{T}X' = B = \begin{pmatrix} | & | & | \\ \mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \\ | & | & | \end{pmatrix} \begin{pmatrix} \lambda_{1} & & | \\ \ddots & \lambda_{n} \end{pmatrix} \begin{pmatrix} | & | & | \\ \mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \\ | & | & | \end{pmatrix}^{T}$$
$$X'^{T}X' = \begin{pmatrix} | & | & | & | & | \\ \mathbf{v}_{1} & \cdots & \mathbf{v}_{d} & | \\ \mathbf{v}_{1} &$$

So We Get the X'

So we find *X*' by throwing away the last *n*–*d* eigenvalues

$$X' = \begin{pmatrix} --\sqrt{\lambda_1} \mathbf{v}_1 - - \\ \cdots & \cdots \\ -\sqrt{\lambda_d} \mathbf{v}_d - - \end{pmatrix} d \times n$$

For this X':
$$X' = \arg \min_{X'} \|X'^T X' - B\|_{L^2}$$

Lecture 8 - 58

Hao Su

More General Metric MDS

• In general, we minimize directly the square loss on distances

$$ext{stress} = \mathcal{L}(\hat{d}_{ij}) = \left(\sum_{i < j} (\hat{d}_{ij} - f(d_{ij}))^2 / \sum d_{ij}^2\right)^{\frac{1}{2}}$$

• Sammon mapping

Sammon's stress
$$(\hat{d}_{ij}) = \frac{1}{\sum_{\ell < k} d_{\ell k}} \sum_{i < j} \frac{(\hat{d}_{ij} - d_{ij})^2}{d_{ij}}$$

 This weighting system normalizes the squared-errors in pairwise distances by using the distance in the original space. As a result, Sammon mapping preserves the small d_{ij}, giving them a greater degree of importance in the fitting procedure than for larger values of d_{ij}

Generally solved by gradient descent

Agenda

- Supervised Point Set Generation (cont)
- Multidimensional Scaling
- Parametric Shape Space for Homotopic Shapes

CC CC E 6 KKK KE E. 50 6 1566686**8**03866999 0064066660 reference SALESCICE CAR 0.0 20 N. 191 N. E.C. RE P 12 N. 220 CE 4. ALC: N 4 ale . 200 N 1 X SIT 5.1. KON BE X R.R. 2ª PC-CE CO 00001 191 tit. POP. × AERO N.N. 00000000000 ₩ \sim 00000000000000000 \mathbf{i} × * × × \sim X × ×

Every point in the shape space is a "valid shape"?

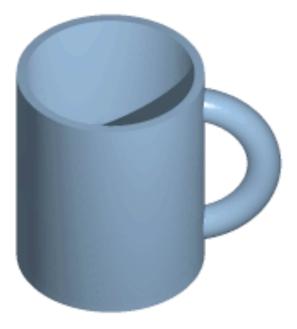
[Wu et al, Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling]

Homotopy

For continuous functions *f* and *g* from a topological space *X* to a topological space *Y*:

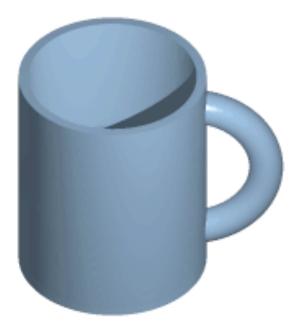
• *f* and *g* are homotopic iff here exists a continuous function $H: X \times [0,1] \rightarrow Y$, such that

$$H(x,0) = f(x)$$
 and $H(x,1) = g(x)$.



Homotopy

Intuition: To construct the family of deformable shapes (face, body, etc.)



Hao Su