

Lecture 7: Deep Learning on Extrinsic Geometry

Instructor: Hao Su

Jan 30, 2018

slides credits: Justin Solomon, Chengcheng Tang

3D deep learning tasks

3D geometry analysis

Classification

Parsing (object/scene)

Correspondence

Lecture 7 - 2

3D deep learning tasks

3D synthesis

Monocular Shape completion Shape modeling

3D deep learning algorithms (by representations)

. . .

[Maturana et al. 2015] [Wu et al. 2015] (GAN) [Qi et al. 2016] [Liu et al. 2016] **[Wang et al. 2017] (O-Net) [Tatarchenko et al. 2017] (OGN)**

Multi-view

Volumetric

Lecture 7 - 4

3D deep learning algorithms (by representations)

[Su et al. 2015] [Kalogerakis et al. 2016]

[Maturana et al. 2015] [Wu et al. 2015] (GAN) [Qi et al. 2016] [Liu et al. 2016] **[Wang et al. 2017] (O-Net) [Tatarchenko et al. 2017] (OGN)**

[Qi et al. 2017] (Point] [Fan et al. 2017] (Poin

Volumetric

[Defferard et al. 2016] [Henaff et al. 2015] **[Yi et al. 2017] (SyncSpecC** [Tulsiani et al. 2017] [Li et al. 2017] (GRASS)

Point cloud

Mesh (Graph CNN) Part assembly

Hao Su

Lecture 7 - 5

Cartesian product space of "task" and "representation"

3D geometry analysis

3D synthesis

Deep Learning on Point Cloud Data

Agenda

- Why point cloud?
- Comparison of point cloud
- Point cloud generation by deep learning

Agenda

- Why point cloud?
- Comparison of point cloud
- Point cloud generation by deep learning

- Simplest representation: **only points**, no connectivity
- Collection of (x,y,z) coordinates, possibly with normals
- Points with orientation are called surfels

Filip van Bouwel

- Simplest representation: **only points**, no connectivity
- Collection of (x,y,z) coordinates, possibly with normals
- Points with orientation are called surfels
- Severe limitations:
 - no simplification or subdivision
 - no direct smooth rendering
 - no topological information

- Simplest representation: **only points**, no connectivity
- Collection of (x,y,z) coordinates, possibly with normals
- Points with orientation are called surfels
- Severe limitations:
 - no simplification or subdivision
 - no direct smooth rendering
 - no topological information
 - weak approximation power: O(h) for point clouds
 - need square number of points for the same approximation power as meshes

- Simplest representation: only points, no connectivity
- Collection of (x,y,z) coordinates, possibly with normals
- Points with orientation are called surfels
- Severe limitations:
 - no Simplification or subdivision
 - no direct smooth rendering
 - no topological information
 - weak approximation power
 - noise and outliers

Why Point Clouds?

- 1) Typically, that's the only thing that's available
- 2) Isolation: sometimes, easier to handle (esp. in hardware).

Fracturing Solids

Meshless Animation of Fracturing Solids Pauly et al., SIGGRAPH '05

Fluids

Adaptively sampled particle fluids, Adams et al. SIGGRAPH '07

Why Point Clouds?

 Typically, that's the only thing that's available Nearly all 3D scanning devices produce point clouds

Agenda

- Why point cloud?
- Comparison of point cloud
- Point cloud generation by deep learning

Point cloud as samples

- Point cloud can be thought as a representation of prob. distribution
- Compare point cloud is to compare underlying distributions

Motivating Question

Motivating Question

Fuzzy Version

Typical Measurement

Returning to the Question

Returning to the Question

Neither! Equidistant.

What's Wrong?

Measured overlap, not displacement.

Optimal Transport

Image courtesy M. Cuturi

Geometric theory of probability

Alternative Idea

Alternative Idea

Match mass from the distributions

Transportation Matrix

Supply distribution p₀
Demand distribution p₁

Earth Mover's Distance

$$\begin{split} \min_{T} \sum_{ij} T_{ij} d(x_i, x_j) & \textit{m} \cdot \textit{d}(x, y) \\ \text{s.t.} \sum_{j} T_{ij} = p_i & \text{Starts at } p \\ \sum_{i} T_{ij} = q_j & \text{Ends at } q \\ T \ge 0 & \text{Positive mass} \end{split}$$

Important Theorem

EMD is a metric when d(x,y) satisfies the triangle inequality.

"The Earth Mover's Distance as a Metric for Image Retrieval" Rubner, Tomasi, and Guibas; IJCV 40.2 (2000): 99—121.

> Revised in: **"Ground Metric Learning"** Cuturi and Avis; JMLR 15 (2014)

Basic Application

http://web.mit.edu/vondrick/ihog/

Comparing histogram descriptors

Discrete Perspective

Algorithm for Small-Scale Problems

Step 1: Compute D_{ij}

Step 2: Solve linear program

Simplex

...

- Interior point
- Hungarian algorithm

Transportation Matrix Structure

Underlying map!

p-Wasserstein Distance

Continuous analog of EMD

Agenda

- Why point cloud?
- Comparison of point cloud
- Point cloud generation by deep learning
3D perception from a single image

Monocular vision

Cited from https://en.wikipedia.org/wiki/Binocular_vision

Hao Su

A psychological evidence – mental rotation

by Roger N. Shepard, National Science Medal Laurate and Lynn Cooper, Professor at Columbia University

Visual cues are complicated

Hao Su

Status review of monocular vision algorithms

Shape from X (texture, shading, ...)


```
[Horn, 1989]
```


Status review of monocular vision algorithms

Shape from X (texture, shading, ...)

[Horn, 1989]

Learning-based (from small data)

- la
 - large planes

- fine structure
- topological variatio

...

Status review of monocular vision algorithms

- Shape from X (texture, shading, ...)
 - Learning-based (from small data)

Data-driven 2D-3D lifting

Many 3D objects

A priori knowledge of the 3D world

Our result: 3D reconstruction from real Images

CVPR 2017, A Point Set Generation Network for 3D Object Reconstruction from a Single Image

Input

Reconstructed 3D point cloud CVPR '17, Point Set Generation

Our result: 3D reconstruction from real Images

CVPR 2017, A Point Set Generation Network for 3D Object Reconstruction from a Single Image

Input

Reconstructed 3D point cloud CVPR '17, Point Set Generation

3D point clouds

Flexible

 a few thousands of points can precisely model a great variety of shapes

CVPR '17, Point Set Generation

3D point clouds

Flexible

 a few thousands of points can precisely model a great variety of

shapes

Geometrically manipulable

- deformable
- interpolable, extrapolable
- convenient to impose structural

CVPR '17, Point Set Generation

constraints

Hao Su

CVPR '17, Point Set Generation

Pipeline

Groundtruth point set

CVPR '17, Point Set Generation

Pipeline

CVPR '17, Point Set Generation

Pipeline

Groundtruth point set

CVPR '17, Point Set Generation

Pipeline

Shape predictor

Groundtruth point set

Prediction

CVPR '17, Point Set Generation

on

(L

Hao Su

Hao Su

Pipeline

Set comparison

Given two sets of points, measure their discrepancy

CVPR '17, Point Set Generation

Set comparison

Given two sets of points, measure their discrepancy • Key challenge: correspondence problem

CVPR '17, Point Set Generation

Correspondence (I): optimal assignment

Correspondence (II): closest point

Required properties of distance metrics

Geometric requirement

Computational requirement

CVPR '17, Point Set Generation

Required properties of distance metrics

Geometric requirement

- Reflects natural shape differences
- Induce a nice space for *shape interpolations*

Computational requirement

CVPR '17, Point Set Generation

A fundamental issue: inherent ambiguity in 2D-3D dimension lifting

CVPR '17, Point Set Generation

A fundamental issue: inherent ambiguity in 2D-3D dimension lifting

CVPR '17, Point Set Generation

A fundamental issue: inherent ambiguity in 2D-3D dimension lifting

CVPR '17, Point Set Generation

A fundamental issue: inherent ambiguity in 2D-3D dimension lifting

 By loss minimization, the network tends to predict a "mean shape" that averages out uncertainty CVPR '17, Point Set Generation

Distance metrics affect mean shapes

The mean shape carries characteristics of the distance metric

continuous
hidden variable
(radius)
$$\bar{x} = \underset{x}{\operatorname{argmin}} \mathbb{E}_{s \sim \mathbb{S}}[d(x, s)]$$

Input EMD mean Chamfer mean CVPR '17, Point Set Generation

Mean shapes from distance metrics

The mean shape carries characteristics of the distance metric

CVPR '17, Point Set Generation

Comparison of predictions by EMD versus CD

Hao Su

Required properties of distance metrics

Geometric requirement

- Reflects natural shape differences
- Induce a nice space for shape interpolations

Computational requirement

Defines a loss function that is numerically easy to optimize

CVPR '17, Point Set Generation

To be used as a loss function, the metric has to be

- **Differentiable** with respect to point locations
- Efficient to compute

CVPR '17, Point Set Generation

Differentiable with respect to point location

Chamfer distance
$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

Earth Mover's distance

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} ||x - \phi(x)||_2$$
 where $\phi: S_1 \to S_2$ is a bijection.

- Simple function of coordinates
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence does not change

Conclusion: differentiable almost everywhere

• **Differentiable** with respect to point location

an infinitesimal change to model parameters

ere

CVPR '17, Point Set Generation

• Efficient to compute

Chamfer distance: trivially parallelizable on CUDA Earth Mover's distance (optimal assignment):

- We implement a **distributed** approximation algorithm on CUDA
- Based upon [Bertsekas, 1985], $(1 + \epsilon)$ -approximation

Deep neural network

CVPR '17, Point Set Generation

Hao Su

Deep neural network

Universal function approximator

- A cascade of layers
- Each layer conducts a simple transformation (parameterized) CVPR '17, Point Set Generation

input

Deep neural network

Universal function approximator

- A cascade of layers
- Each layer conducts a simple transformation (parameterized)
- Millions of parameters, has to be fitted by Many data int Set Generation

input

CVPR '17, Point Set Generation

Hao Su

CVPR '17, Point Set Generation

Hao Su

Natural statistics of geometry

- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates

CVPR '17, Point Set Generation

Natural statistics of geometry

- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates
- Also some intricate structures

CVPR '17, Point Set Generation

points have high local variation