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3D deep learning tasks
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3D geometry analysis

Classification Parsing
(object/scene)

Correspondence
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3D deep learning tasks
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3D synthesis

Monocular 
3D reconstruction

Shape completion Shape modeling
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3D deep learning algorithms (by representations)
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VolumetricMulti-view

[Su et al. 2015]
[Kalogerakis et al. 2016]
…

[Maturana et al. 2015]
[Wu et al. 2015] (GAN)
[Qi et al. 2016]
[Liu et al. 2016]
[Wang et al. 2017] (O-Net)
[Tatarchenko et al. 2017] (OGN)
…
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3D deep learning algorithms (by representations)
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[Defferard et al. 2016]
[Henaff et al. 2015]
[Yi et al. 2017] (SyncSpecCNN)
…

VolumetricMulti-view

[Qi et al. 2017] (PointNet)
[Fan et al. 2017] (PointSetGen)

Point 
cloud

Mesh (Graph 
CNN)

Part 
assembly

[Tulsiani et al. 2017]
[Li et al. 2017] (GRASS)

[Su et al. 2015]
[Kalogerakis et al. 2016]
…

[Maturana et al. 2015]
[Wu et al. 2015] (GAN)
[Qi et al. 2016]
[Liu et al. 2016]
[Wang et al. 2017] (O-Net)
[Tatarchenko et al. 2017] (OGN)
…
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Cartesian product space of “task” and 
“representation”
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3D geometry analysis

3D synthesis



Deep Learning on Point Cloud 
Data
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Agenda
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• Why point cloud?
• Comparison of point cloud
• Point cloud generation by deep learning
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Agenda
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• Why point cloud?
• Comparison of point cloud
• Point cloud generation by deep learning
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Point Clouds

Simplest representation: only points, no connectivity
Collection of (x,y,z) coordinates, possibly with normals
Points with orientation are called surfels

Filip van Bouwel
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Point Clouds
Simplest representation: only points, no connectivity
Collection of (x,y,z) coordinates, possibly with normals
Points with orientation are called surfels
Severe limitations:

no simplification or subdivision
no direct smooth rendering
no topological information

?

or
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Point Clouds
Simplest representation: only points, no connectivity
Collection of (x,y,z) coordinates, possibly with normals
Points with orientation are called surfels
Severe limitations:

no simplification or subdivision
no direct smooth rendering
no topological information
weak approximation power: for point clouds

need square number of points for the same 
approximation power as meshes
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Point Clouds
Simplest representation: only points, no connectivity
Collection of (x,y,z) coordinates, possibly with normals
Points with orientation are called surfels
Severe limitations:

no Simplification or subdivision
no direct smooth rendering
no topological information
weak approximation power
noise and outliers
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Why Point Clouds?
1) Typically, that’s the only thing that’s available
2) Isolation: sometimes, easier to handle (esp. in 

hardware).

Meshless Animation of Fracturing Solids 
Pauly et al., SIGGRAPH ‘05

Fracturing Solids Fluids

Adaptively sampled particle fluids,
Adams et al. SIGGRAPH ‘07
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Why Point Clouds?
• Typically, that’s the only thing that’s available

Nearly all 3D scanning devices produce point clouds
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Agenda
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• Why point cloud?
• Comparison of point cloud
• Point cloud generation by deep learning
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Point cloud as samples
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• Point cloud can be thought as a representation of 
prob. distribution

• Compare point cloud is to compare underlying 
distributions
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Query 1 2
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Query 1 2

p(x; y)

p1(x; y) p2(x; y)
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p1(x) p2(x)

Lp norm
KL divergence
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Query 1 2

p(x; y)

p1(x; y) p2(x; y)
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Query 1 2

p(x; y)

p1(x; y) p2(x; y)
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Measured overlap, 
not displacement.
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Image courtesy M. Cuturi

Geometric theory of probability
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Compare in this direction

Not in this direction
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� Supply distribution 𝒑𝟎
� Demand distribution 𝒑𝟏
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p q

𝒎 ⋅ 𝒅(𝒙, 𝒚)

Starts at 𝒑

Ends at 𝒒

Positive mass
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EMD is a metric when d(x,y) 
satisfies the triangle inequality.

“The Earth Mover's Distance as a Metric for Image Retrieval”
Rubner, Tomasi, and Guibas; IJCV 40.2 (2000):  99—121.

Revised in:
“Ground Metric Learning”

Cuturi and Avis; JMLR 15 (2014)
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http://web.mit.edu/vondrick/ihog/
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� Step 1: Compute 𝑫𝒊𝒋

� Step 2: Solve linear program
� Simplex
� Interior point
� Hungarian algorithm
� …



1/30/2018    Hao Su                                                 Lecture      -7 34

Underlying map!
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http://www.sciencedirect.com/science/article/pii/S152407031200029X#

Shortest path 
distance

Expectation

Geodesic distance d(x,y)
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Agenda
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• Why point cloud?
• Comparison of point cloud
• Point cloud generation by deep learning
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3D perception from a single image
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Monocular vision
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a typical predatora typical prey

Cited from https://en.wikipedia.org/wiki/Binocular_vision
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A psychological evidence – mental rotation

    Hao Su                                                 Lecture      -7 39

by Roger N. Shepard, National Science Medal Laurate
and Lynn Cooper, Professor at Columbia University
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contrast
color

motion

texture

symmetry

category-specific 3D knowledge

part

……

Visual cues are complicated
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Status review of monocular vision algorithms
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▪ Shape from X (texture, 
shading, …)

[Horn, 1989]

[Kender, 1979]
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Status review of monocular vision algorithms
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▪ Shape from X (texture, 
shading, …)

▪ Learning-based (from small 
data) 

Hoiem et al, ICCV’05
Saxena et al, 
NIPS’05
…

[Horn, 1989]

[Kender, 1979]

- large planes

- fine structure
- topological variation
- …
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Status review of monocular vision algorithms
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▪ Shape from X (texture, 
shading, …)

▪ Learning-based (from small 
data) 

Hoiem et al, ICCV’05
Saxena et al, 
NIPS’05
…

[Horn, 1989]

[Kender, 1979]

- large planes

- fine structure
- topological variation
- …

Strong assumption
Not robust
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Data-driven 2D-3D lifting
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Many 3D objects
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Our result: 3D reconstruction from real Images
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Input Reconstructed 3D point cloud

CVPR 2017, A Point Set Generation Network for 3D Object Reconstruction from a Single 
Image 

CVPR ’17, Point Set Generation
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Our result: 3D reconstruction from real Images
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Input Reconstructed 3D point cloud
CVPR ’17, Point Set Generation

CVPR 2017, A Point Set Generation Network for 3D Object Reconstruction from a Single 
Image 
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3D point clouds
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     Flexible
• a few thousands of points can 

precisely model a great variety of 
shapes

CVPR ’17, Point Set Generation
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3D point clouds
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     Flexible
• a few thousands of points can 

precisely model a great variety of 
shapes

     Geometrically manipulable
• deformable
• interpolable, extrapolable
• convenient to impose structural 

constraints

CVPR ’17, Point Set Generation
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Pipeline
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CVPR ’17, Point Set Generation

rend
er
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Pipeline
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CVPR ’17, Point Set Generation

rend
er

sampl
e

2K object categories
200K shapes
~10M image/point set pairs

Groundtruth point set
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Pipeline
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Shape predictor 
Prediction

CVPR ’17, Point Set Generation

rend
er

sampl
e

Groundtruth point set

(f)



1/30/2018

Pipeline
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Shape predictor 
Prediction

CVPR ’17, Point Set Generation

rend
er

sampl
e

Groundtruth point set

A set is 
invariant up 

to 
permutation

(f)
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Shape predictor 

Pipeline
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Loss
on

sets

CVPR ’17, Point Set Generation

rend
er

sampl
e

Prediction

Groundtruth point set

(f)

(L)
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Pipeline
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Shape predictor 

CVPR ’17, Point Set Generation

rend
er

sampl
e

Prediction

(f)

(L)

Groundtruth point set

Loss
on

sets
(L)
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Set comparison
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Given two sets of points, measure their discrepancy

CVPR ’17, Point Set Generation
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Set comparison
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Given two sets of points, measure their discrepancy

Key challenge: 

correspondence 
problem

CVPR ’17, Point Set Generation
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Correspondence (I): optimal assignment
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a.k.a Earth Mover’s distance (EMD)

Given two sets of points, measure their discrepancy

CVPR ’17, Point Set Generation
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Correspondence (II): closest point
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a.k.a Chamfer distance (CD)

Given two sets of points, measure their discrepancy

CVPR ’17, Point Set Generation
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Required properties of distance metrics
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Geometric requirement

Computational requirement

CVPR ’17, Point Set Generation
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Required properties of distance metrics
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Geometric requirement

• Reflects natural shape differences

• Induce a nice space for shape interpolations

Computational requirement

CVPR ’17, Point Set Generation
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How distance metric affects learning?
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A fundamental issue: inherent ambiguity in 2D-3D 
dimension lifting

CVPR ’17, Point Set Generation
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How distance metric affects learning?
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A fundamental issue: inherent ambiguity in 2D-3D 
dimension lifting

CVPR ’17, Point Set Generation
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How distance metric affects learning?

    Hao Su                                                 Lecture      -7 63

A fundamental issue: inherent ambiguity in 2D-3D 
dimension lifting

CVPR ’17, Point Set Generation
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How distance metric affects learning?
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A fundamental issue: inherent ambiguity in 2D-3D 
dimension lifting

• By loss minimization, the network tends to predict a 

“mean shape” that averages out uncertainty
CVPR ’17, Point Set Generation



1/30/2018

Distance metrics affect mean shapes
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The mean shape carries characteristics of the distance 
metric

continuous 
hidden variable

(radius)

CVPR ’17, Point Set Generation
Input EMD mean Chamfer mean
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Mean shapes from distance metrics
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The mean shape carries characteristics of the distance 
metric

Input EMD mean Chamfer mean

continuous 
hidden variable

(radius)
discrete 

hidden variable
(add-on location)

CVPR ’17, Point Set Generation
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Comparison of predictions by EMD versus CD
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Input ChamferEMD

CVPR ’17, Point Set Generation
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Required properties of distance metrics
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Geometric requirement

• Reflects natural shape differences

• Induce a nice space for shape interpolations

Computational requirement

• Defines a loss function that is numerically easy to 
optimize

CVPR ’17, Point Set Generation
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Computational requirement of metrics
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To be used as a loss function, the metric has to be

•    Differentiable with respect to point locations

•    Efficient to compute

CVPR ’17, Point Set Generation
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Computational requirement of metrics
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•    Differentiable with respect to point location

- Simple function of coordinates
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence 

does not change

Conclusion: differentiable almost everywhere

Chamfer distance

Earth Mover’s distance

CVPR ’17, Point Set Generation
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Computational requirement of metrics
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•    Differentiable with respect to point location

- Simple function of coordinates
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence 

does not changeConclusion: differentiable almost everywhere

Chamfer distance

Earth Mover’s distance• For many algorithms (sorting, shortest path, 
network flow, …),

• an infinitesimal change to model parameters 

CVPR ’17, Point Set Generation
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- We implement a distributed approximation algorithm 
on CUDA

- Based upon [Bertsekas, 1985],           -approximation

Computational requirement of metrics
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•    Efficient to compute

Chamfer distance: trivially parallelizable on CUDA
Earth Mover’s distance (optimal assignment):

CVPR ’17, Point Set Generation
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Pipeline
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CVPR ’17, Point Set Generation

Loss
on

sets

sampl
e

(L)

Deep network Prediction

(f)
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Universal function approximator
x

• A cascade of layers

Deep neural network
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outputinput

hidden layers

… …

CVPR ’17, Point Set Generation
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Deep neural network
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outputinput

hidden layers

… …

CVPR ’17, Point Set Generation

Universal function approximator
x

• A cascade of layers
• Each layer conducts a simple transformation (parameterized)
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Deep neural network
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Universal function approximator
x

• A cascade of layers
• Each layer conducts a simple transformation (parameterized)
• Millions of parameters, has to be fitted by many data

outputinput

hidden layers

… …

CVPR ’17, Point Set Generation
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Pipeline
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CVPR ’17, Point Set Generation

Los
s

on

sampl
e

(L)

Deep network Prediction

(f)
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Pipeline
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CVPR ’17, Point Set Generation

Los
s

on

sampl
e

(L)

(f)
Encoder Predictor

shape 
embedding

space 
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Pipeline
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CVPR ’17, Point Set Generation

Loss
on

sets

sampl
e

(L)

(f)
Encoder Predictor

shape 
embedding

space 
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Pipeline
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CVPR ’17, Point Set Generation

Loss
on

sets

sampl
e

(L)

... 
conv

Predictor
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Pipeline
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CVPR ’17, Point Set Generation

Loss
on

sets

sampl
e

(L)

Predictor
conv

... 
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Natural statistics of geometry
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• Many local structures are common
• e.g., planar patches, cylindrical patches
• strong local correlation among point coordinates

CVPR ’17, Point Set Generation
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Natural statistics of geometry
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• Many local structures are common
• e.g., planar patches, cylindrical patches
• strong local correlation among point coordinates

• Also some intricate structures
• points have high local variation

CVPR ’17, Point Set Generation


