UCSanDiego

Lecture 6:

Geometry Foundations (II)

Instructor: Hao Su

Jan 25, 2018

Agenda

- Curve
- Surface
- Introduction of Geometry Processing

Parameterized Curves Intuition

A particle is moving in space $\left(E^{2}, E^{3}\right)$

At time t its position is given by

$$
\boldsymbol{\alpha}(t)=(x(t), y(t), z(t))
$$

Parameterized Curves
 Definition

A parameterized differentiable curve is a differentiable map $\alpha: I \rightarrow R^{3}$ of an interval $I=(\mathrm{a}, \mathrm{b})$ of the real line R into R^{3}

$\boldsymbol{\alpha}$ maps $t \in I$ into a point $\alpha(t)=(x(t), y(t), z(t)) \in R^{3}$ such that $x(t), y(t), z(t)$ are differentiable

A function is differentiable if it has, at all points, derivatives of all orders

The Tangent Vector

Let

$$
\boldsymbol{\alpha}(t)=(x(t), y(t), z(t)) \in R^{3}
$$

Then

$$
\boldsymbol{\alpha}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right) \in R^{3}
$$

is called the tangent vector (or velocity vector) of the curve $\boldsymbol{\alpha}$ at t

Back to the Circle

$$
\begin{aligned}
& \boldsymbol{\alpha}(t)=(\cos (t), \sin (t)) \\
& \boldsymbol{\alpha}^{\prime}(t)=(-\sin (t), \cos (t))
\end{aligned}
$$

$\alpha^{\prime}(t)$ - direction of movement
$\left|\boldsymbol{\alpha}^{\prime}(t)\right|$ - speed of movement

Back to the Circle

$$
\begin{aligned}
& \boldsymbol{\alpha}_{\mathbf{1}}(t)=(\cos (t), \sin (t)) \\
& \boldsymbol{\alpha}_{\mathbf{2}}(t)=(\cos (-t), \sin (-t))
\end{aligned}
$$

Same speed, different direction

The Tangent Line

Let $\alpha: I \rightarrow R^{3}$ be a parameterized differentiable curve.
For each $t \in I$ s.t. $\boldsymbol{\alpha}^{\prime}(t) \neq \mathbf{0}$ the tangent line to $\boldsymbol{\alpha}$ at t is the line which contains the point $\boldsymbol{\alpha}(t)$ and the vector $\boldsymbol{\alpha}^{\prime}(t)$

Arc Length of a Curve

How long is this curve?

Approximate with straight lines
Sum lengths of lines: $\Delta s=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$

Arc Length

Let $\boldsymbol{\alpha}: I \rightarrow R^{3}$ be a parameterized differentiable curve. The arc length of α from the point t_{1} is:

$$
\begin{aligned}
s(t) & =\int_{t_{1}}^{t}\left|\alpha^{\prime}(p)\right| d p \\
& =\int_{t_{1}}^{t} \sqrt{\left(\frac{d x}{d p}\right)^{2}+\left(\frac{d y}{d p}\right)^{2}+\left(\frac{d z}{d p}\right)^{2}} d p
\end{aligned}
$$

The arc length is an intrinsic property of the curve - does not depend on choice of parameterization

Arc Length Parameterization

A curve $\boldsymbol{\alpha}: I \rightarrow R^{3}$ is parameterized by arc length if $\left|\boldsymbol{\alpha}^{\prime}(t)\right|=1$, for all t

For such curves we have

$$
s(t)=\int_{t_{0}}^{t} d t^{\prime}=t-t_{0}
$$

The Local Theory of Curves

Defines local properties of curves

Local = properties which depend only on behavior in neighborhood of point

We will consider only curves parameterized by arc length

Curvature and Normal

- Assuming t is arc-length parameter:

The Osculating Plane

The plane determined by the unit tangent and normal vectors $T(s)$ and $N(s)$ is called the osculating plane at S

The Binormal Vector

For points s, s.t. $\kappa(s) \neq 0$, the binormal vector $\boldsymbol{B}(s)$ is defined as:

$$
\boldsymbol{B}(s)=\boldsymbol{T}(s) \times N(s)
$$

The binormal vector defines the osculating plane

The Frenet Frame

$\{\boldsymbol{T}(s), \boldsymbol{N}(s), \boldsymbol{B}(s)\}$ form an orthonormal basis for R^{3} called the Frenet frame

How does the frame change when the particle moves?

What are $\boldsymbol{T}^{\prime}, \boldsymbol{N}^{\prime}, \boldsymbol{B}^{\prime}$ in
 terms of $\boldsymbol{T}, \boldsymbol{N}, \boldsymbol{B}$?

$T^{\prime}(s)$

Already used it to define the curvature:

$$
\boldsymbol{T}^{\prime}(s)=\kappa(s) N(s)
$$

Since in the direction of the normal, its orthogonal to \boldsymbol{B} and T

$N^{\prime}(s)$

What is $N^{\prime}(s)$ as a combination of $N, T, B ?$
We know: $N(s) \cdot N(s)=1$
From the lemma $\rightarrow N^{\prime}(s) \cdot N(s)=0$

We know: $N(s) \cdot T(s)=0$
From the lemma $\rightarrow N^{\prime}(s) \cdot T(s)=-N(s) \cdot T^{\prime}(s)$
From the definition $\rightarrow \kappa(s)=N(s) T^{\prime}(s)$
$\rightarrow N^{\prime}(s) \cdot T(s)=-\kappa(s)$

The Torsion

Let $\alpha: I \rightarrow R^{3}$ be a curve parameterized by arc length s. The torsion of α at s is defined by:

$$
\tau(s)=N^{\prime}(s) \cdot \boldsymbol{B}(s)
$$

Now we can express $N^{\prime}(s)$ as:

$$
\boldsymbol{N}^{\prime}(s)=-\kappa(s) T(s)+\tau(s) \boldsymbol{B}(s)
$$

$\boldsymbol{N}^{\prime}(s)=-\kappa(s) \boldsymbol{T}(s)+\tau(s) \boldsymbol{B}(s)$

Curvature vs. Torsion

The curvature indicates how much the normal changes, in the direction tangent to the curve

The torsion indicates how much the normal changes, in the direction orthogonal to the osculating plane of the curve

The curvature is always positive, the torsion can be negative

Both properties do not depend on the choice of parameterization

$B^{\prime}(s)$

What is $\boldsymbol{B}^{\prime}(s)$ as a combination of N, T, \boldsymbol{B} ?
We know: $\boldsymbol{B}(s) \cdot \boldsymbol{B}(s)=1$
From the lemma $\rightarrow \boldsymbol{B}^{\prime}(s) \cdot \boldsymbol{B}(s)=0$
We know: $\quad \boldsymbol{B}(s) \cdot \boldsymbol{T}(s)=0, \boldsymbol{B}(s) \cdot N(s)=0$
From the lemma \rightarrow

$$
\boldsymbol{B}^{\prime}(s) \cdot T(s)=-\boldsymbol{B}(s) \cdot \boldsymbol{T}^{\prime}(s)=-\boldsymbol{B}(s) \cdot \kappa(s) \boldsymbol{N}(s)=0
$$

From the lemma \rightarrow

$$
\boldsymbol{B}^{\prime}(s) \cdot \boldsymbol{N}(s)=-\boldsymbol{B}(s) \cdot \boldsymbol{N}^{\prime}(s)=-\tau(s)
$$

Now we can express $\boldsymbol{B}^{\prime}(s)$ as:

$$
\boldsymbol{B}^{\prime}(s)=-\tau(s) N(s)
$$

The Frenet Formulas

$$
\begin{array}{lll}
\boldsymbol{T}^{\prime}(s)= & \kappa(s) \boldsymbol{N}(s) & \\
\boldsymbol{N}^{\prime}(s)=-\kappa(s) \boldsymbol{T}(s) & & +\tau(s) \boldsymbol{B}(s) \\
\boldsymbol{B}^{\prime}(s)= & -\tau(s) \boldsymbol{N}(s) &
\end{array}
$$

In matrix form:

$$
\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{T}^{\prime}(s) & \boldsymbol{N}^{\prime}(s) & \boldsymbol{B}^{\prime}(s) \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{T}(s) & \boldsymbol{N}(s) & \boldsymbol{B}(s) \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{ccc}
0 & -\kappa(s) & 0 \\
\kappa(s) & 0 & -\tau(s) \\
0 & \tau(s) & 0
\end{array}\right]
$$

An Example - The Helix

$\boldsymbol{\alpha}(t)=(a \cos (t), a \sin (t), b t)$

In arc length parameterization:

$\boldsymbol{\alpha}(s)=(a \cos (s / c), a \sin (s / c), b s / c)$, where $c=\sqrt{a^{2}+b^{2}}$

Curvature: $\kappa(s)=\frac{a}{a^{2}+b^{2}} \quad$ Torsion: $\tau(s)=\frac{b}{a^{2}+b^{2}}$

Note that both the curvature and torsion are constants

UCSanDiego

Tangents, Normals

- For any point on the edge, the tangent is simply the unit vector along the edge and the normal is the perpendicular vector

Tangents, Normals

- For vertices, we have many options

Tangents, Normals

- Can choose to average the adjacent edge normals

Tangents, Normals

- Weight by edge lengths

$$
\hat{\mathbf{n}}_{v}=\frac{\left|e_{1}\right| \hat{\mathbf{n}}_{e_{1}}+\left|e_{2}\right| \hat{\mathbf{n}}_{e_{2}}}{\left\|\left|e_{1}\right| \hat{\mathbf{n}}_{e_{1}}+\left|e_{2}\right| \hat{\mathbf{n}}_{e_{2}}\right\|}
$$

The Length of a Discrete Curve

- Sum of edge lengths

$$
\operatorname{len}(p)=\sum_{i=1}^{n-1}\left\|\mathbf{p}_{i+1}-\mathbf{p}_{i}\right\|
$$

\mathbf{p}_{4}

Curvature of a Discrete Curve

- Curvature is the change in normal direction as we travel along the curve

no change along each edge curvature is zero along edges

Curvature of a Discrete Curve

- Curvature is the change in normal direction as we travel along the curve

Curvature of a Discrete Curve

- Curvature is the change in normal direction as we travel along the curve

Curvature of a Discrete Curve

- Curvature is the change in normal direction as we travel along the curve

Curvature of a Discrete Curve

- Zero along the edges
- Turning angle at the vertices
= the change in normal direction

TURNING NUMBER THEOREM

UCSanDiego

Gauss Map

Normal map from curve to S^{1}

Lecture 6-36

Signed Curvature on Plane Curves

$$
T(s)=(\cos \theta(s), \sin \theta(s))
$$

$$
\begin{aligned}
T^{\prime}(s) & =\theta^{\prime}(s)(-\sin \theta(s), \cos \theta(s)) \\
& \equiv \kappa(s) N(s)
\end{aligned}
$$

Turning Numbers

Lecture 6-38

Recovering Theta

$$
\begin{aligned}
\theta^{\prime}(s) & \equiv \kappa(s) \\
& \Downarrow \\
\Delta \theta & =\int_{s_{0}}^{s_{1}} \kappa(s) d s
\end{aligned}
$$

Turning Number Theorem

$$
\kappa(s) d s=2 \pi k
$$

A "global" theorem!

Discrete Gauss Map

Discrete Gauss Map

Discrete Gauss Map

http://mesh.brown.edu/3DPGP-2007/pdfs/sgo6-courseo1.pdf

Key Observation

What's Going On?

What's Going On?

$\theta=\int_{\Gamma} \kappa d s$

Total change in curvature

What's Going On?

$\theta=\int_{\Gamma} \kappa d s$
 Total change in curvature

Lecture 6-47

Discrete Turning Angle Theorem

GEOMETRY ON SURFACES

UCSanDiego

Surfaces, Parametric Form

- Continuous surface

$$
\mathbf{p}(u, v)=\left(\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right),(u, v) \in \mathbb{R}^{2}
$$

- Tangent plane at point $\mathbf{p}(u, v)$ is spanned by

$$
\mathbf{p}_{u}=\frac{\partial \mathbf{p}(u, v)}{\partial u}, \quad \mathbf{p}_{v}=\frac{\partial \mathbf{p}(u, v)}{\partial v}
$$

These vectors don't have to be orthogonal

Surface Normals

- Surface normal:

$$
\mathbf{n}(u, v)=\frac{\mathbf{p}_{u} \times \mathbf{p}_{v}}{\left\|\mathbf{p}_{u} \times \mathbf{p}_{v}\right\|}
$$

- Assuming regular parameterization, i.e.,

$$
\mathbf{p}_{u} \times \mathbf{p}_{v} \neq 0
$$

Normal Curvature

Normal Curvature

Reminder: Radius of Curvature

Curvature

Surface Curvatures

- Principal curvatures
- Minimal curvature $\kappa_{1}=\kappa_{\text {min }}=\min _{\varphi} \kappa_{n}(\varphi)$
- Maximal curvature $\kappa_{2}=\kappa_{\text {max }}=\max \kappa_{n}(\varphi)$
- Mean curvature $H=\frac{\kappa_{1}+\kappa_{2}}{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \kappa_{n}(\varphi) d \varphi$
- Gaussian curvature $K=\kappa_{1} \cdot \kappa_{2}$

Principal Directions

- Principal directions: tangent vectors corresponding to $\varphi_{\max }$ and $\varphi_{\text {min }}$

min curvature

max curvature

Principal Directions

Euler's Theorem: Planes of principal curvature are orthogonal and independent of parameterization.

$$
\kappa_{n}(\varphi)=\kappa_{1} \cos ^{2} \varphi+\kappa_{2} \sin ^{2} \varphi, \quad \varphi=\text { angle with } \mathbf{t}_{1}
$$

Principal Directions

Classification

- A point \mathbf{p} on the surface is called
- Elliptic, if $K>0$
- Parabolic, if $K=0$
- Hyperbolic, if $K<0$
- Developable surface iff $K=0$

- can be mapped to the plane without distortion

Local Surface Shape By Curvatures

Isotropic:

 all directions are principal directions$$
K>0, \kappa_{1}=\kappa_{2} \quad K=0
$$

spherical (umbilical)

planar

$$
K>0 \quad K=0 \quad K<0
$$

Anisotropic:

 2 distinct principal directions
elliptic

parabolic

hyperbolic

INTRODUCTION TO GEOMETRY PROCESSING

Application Areas

- Computer games
- Movie production
- Engineering
- Medical applications
- Architecture
- etc.

What is Geometry Processing About?

\author{

- Acquiring
}
- Analyzing/lmproving
- Manipulating

3D Models

A Geometry Processing Pipeline Low Level Algorithms

A Geometry Processing Pipeline

A Geometry Processing Pipeline High Level Algorithms

Simplification

Mesh Quality Criteria

-Smoothness

- Low geometric noise
- Adaptive tessellation
- Low complexity
-Triangle shape
- Numerical robustness

What is a Good Mesh?

What is a Good Mesh?

- Equal edge lengths
- Equilateral triangles
- Valence close to 6

What is a Good Mesh?

- Equal edge lengths
- Equilateral triangles
- Valence close to 6
- Uniform vs. adaptive sampling

What is a Good Mesh?

- Equal edge lengths
- Equilateral triangles
- Valence close to 6
- Uniform vs. adaptive sampling
- Feature preservation

What is a Good Mesh?

- Equal edge lengths
- Equilateral triangles
- Valence close to 6
- Uniform vs. adaptive sampling
- Feature preservation
- Alignment to curvature lines
- Isotropic vs. anisotropic

What is a Good Mesh?

- Equal edge lengths
- Equilateral triangles
- Valence close to 6
- Uniform vs. adaptive sampling
- Feature preservation
- Alignment to curvature lines
- Isotropic vs. anisotropic
- Triangles vs. quadrangles

Parametrization

Application -- Texture Mapping

Segmentation

Symmetry Detection

Deformation / Manipulation

Next Lecture

- 3D Deep Learning on Point Clouds

