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Deep Networks: Three Theory Questions

* Approximation Theory: When and why are deep
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» Optimization Theory. What is the landscape of the
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Deep and Shallow Networks: Universality

Theorem Shallow, one-hidden layer networks with a nonlinear ¢(x) which
1s not a polynomial are universal. Arbitrarily deep networks with a nonlinear
o(x) (including polynomials) are universal.
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Cybenko, Girosi, ....
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Classical learning theory and Kernel Machines
(Regularization in RKHS)

min 2 V() -v)+h |1

implies

I
f(x)= EiOLl-K(X, Xi)
Equation includes splines, Radial Basis Functions and Support Vector

Machines (depending on choice of V).

RKHS were explicitly introduced in learning theory by Girosi (1997), Vapnik (1998).

Moody and Darken (1989), and Broomhead and Lowe (1988) introduced RBF to learning theory. Poggio and
Girosi (1989) introduced Tikhonov regularization in learning theory and worked (implicitly) with RKHS. RKHS
were used earlier in approximation theory (eg Parzen, 1952-1970, Wahba, 1990). Mhaskar, Poggio, Liao, 2016
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Classical kernel machines are equivalent to
shallow networks

Kernel machines...

f(x) = chl.K(x,xl.)+b

value of K corresponds to the “activity” of
the “unit” for the input and the
correspond to “weights”
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Curse of dimensionality

Y= f(X,X5 5005 Xg)

Curse of dimensionality

Both shallow and deep network can approximate a function of d
variables equally well. The number of parameters in both cases

depends exponentiallyondas O(g™“).

Mhaskar, Poggio, Liao, 2016
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Generic functions

F(X] X, 5000 Xg)

Compositional functions

f(xl 9-x2 9'°°9x8) — g3(g21(g11(x1 9x2)9g12 (-x3 9x4 ))g22 (gll(xs 7-x6)7g12 (x7 9x8 )))

Mhaskar, Poggio, Liao, 2016
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Hierarchically local compositionality

f(xpxza'"’-xg) = g3(g|21(g11(x1’x2)’g12(x3 ,X4 ))gzz(gu(xs ’x6)’g12('x7 "x8 )))

§ §

X1 X X3 X4 X5 Xg X7 Xg

Theorem (informal statement)

Suppose that a function of d variables is hierarchically, locally, compositional . Both
shallow and deep network can approximate f equally well. The number of parameters of
the shallow network depends exponentially on d as O(e™) with the dimension
whereas for the deep network dance is O(de™)

Minds . .
Machines Mhaskar, Poggio, Liao, 2016
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Hao Su

Proof by induction

Proof To prove Theorem 2, we observe that each of the constituent

functions being in W2, (1) applied with n = 2 implies that each
of these functions can be approximated from Sy 2 up to accuracy

€ = ¢N~™/2, Our assumption that f € W2 implies that each of
these constituent functions is Lipschitz continuous. Hence, it is easy
to deduce that, for example. if P, P;. P> are approximations to the

constituent functions h, hi, ho, respectively w1thmanaccurac of
e, then since ||h — P|| < ¢, ||h1 — Pi|| € eand ||hy — Pof| <

then ||h(h, 2) — P(Pi, Py)|| = |lh(h1,h2) — h(Py, Ps) ¥
h(Pl P2 — P(Pl,PQ)“ < ||h(h1,h2) — h(Pl,Pz)” -1-
|h( P, Pz) P(P1, P2)|| < ce by Minkowski inequality. Thus

|h(h1, ha) — P(Py, Py)|| < ce,

for some constant ¢ > 0 independent of the functions involved.
This, together with the fact that there are (n — 1) nodes, leads to
(6). 1
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Intuition

» The family of compositional functions are easier to
approximate (can be approximated with less
parameters)

* Deep learning leverages the compositional structure

« Why compositional functions are important for
perception?
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Locality of constituent functions is key: CIFAR

Training error on CFAR-10
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Validation error on CIFAR-10
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Other perspectives of why deep is good

The main result of [Telgarsky, 2016, Colt] says
that there are functions with many oscillations
that cannot be represented by shallow networks
with linear complexity but can be represented
with low complexity by deep networks.
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Proof sketch

1. Functions with few oscillations poorly approximate functions with many oscillations.
2. Functions computed by networks with few layers must have few oscillations.

3. Functions computed by networks with many layers can have many oscillations.

Hao Su Lecture 4 - 16



Deep Networks: Three Theory Questions

« Approximation Theory: When and why are deep
networks better than shallow networks?

« Optimization Theory: What is the landscape of the
empirical risk?

» Learning Theory. How can deep learning not overfit?
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The shape of objective function to be optimized
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Two challenging cases for optimization

N ! — SGD
Z - —— Momentum
- I\N/Izgwentumg e NAG
- Adagrad T' —— Adagrad
Adadelta Adadelta
Rmsprop Rmsprop
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Hessian characterizes the shape at bottom
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Critical points

IVLw)[l=0

local min local max saddle point

-2 -2
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Critical points

If all eigenvalues are positive the point is called a local minimum

If r of them are negative and the rest are positive, then it is called a saddle
point with index r.

At the critical point, the eigenvectors indicate the directions in which the
value of the function locally changes.

Moreover, the changes are proportional to the corresponding -signed-
eigenvalue.

local min local max saddle point

b N ON A
|
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Critical points

 Classical optimization theory mostly assumes Hessian
non-degenerated

* |s this the case for machine learning loss functions?
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Spectrum of Hessian for an MLP

» 5K parameters in total

le—1 Full spectrum at large scale
At initial point
1.5 At final point

Eigenvalues

0 1000 2000 3000 4000 5000

Order of eigenvalues
EMPIRICAL ANALYSIS OF THE HESSIAN OF OVER- PARAMETRIZED NEURAL NETWORKS, Sagun et al.
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An explanation

N N
VL) = 3 SV + 5 3 A @)V ) @

EMPIRICAL ANALYSIS OF THE HESSIAN OF OVER- PARAMETRIZED NEURAL NETWORKS, Sagun et al.
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An explanation

N
NZ[\/ (i () fi(w)) [ € (i) Vi %Zj \V‘?fz w) @
Rank 1 Vanish

(claimed by author)
If you are interested, check it!
(get credit)

N
7 1 /! ~ A 17 A ~
~ = ST @) L@ € f0) 9 filab)]T
1=1
there are at least M — N many trivial eigenvalues of the Hessian!

EMPIRICAL ANALYSIS OF THE HESSIAN OF OVER- PARAMETRIZED NEURAL NETWORKS, Sagun et al.
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Relation between #params and eigenvalues

» Growing the size of the network with fixed data,
architecture, and algorithm.

1K samples from MNIST
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Order of large eigenvalues

“the large positive eigenvalues depend on data, so that their number should not, in
principle, change with the increasing dimensionality of the parameter space.”
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Relation between #params and eigenvalues

1e—5 Left edge of the spectrum
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“‘increasing the number of dimensions keeps the ratio of small negative eigenvalues
fixed.”

EMPIRICAL ANALYSIS OF THE HESSIAN OF OVER- PARAMETRIZED NEURAL NETWORKS, Sagun et al.
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Deep Networks: Three Theory Questions

Approximation Theory: When and why are deep
networks better than shallow networks?

Optimization Theory: What is the landscape of the
empirical risk?

Learning Theory: How can deep learning not
overfit?
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Existing theories are insufficient

* Regularization

* VVC dimension

« Rademacher complexity
» Uniform stability
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A Statistical Mechanics Analysis

LE0) = & 3102 5(9(0) = 15)(0)
neb

SGD:  6(t+1) = 0(t) —ng"?(0)

Assumptions:

(1) By the central limit theorem (CLT), we assume the noise in the stochastic gradient is Gaus-
sian with covariance matrix < C(6)

1
5)(9) = g(0) + —=
g (0) =g(0) 73
We note that the covariance is symmetric positive-semidefinite, and so can be decomposed
into the product of two matrices C(0) = B(6)B' (0) .

(2) We assume the discrete process of SGD can be approximated by the continuous time limit
of the following stochastic differential equation (known as a Langevin equation)

= 190 + Z=BOx 0

where f(¢) is a normalized Gaussian time-dependent stochastic term.

Ag(0), where Ag(8) ~ N(0,C(09)) .

THREE FACTORS INFLUENCING MINIMA IN SGD, JASTRZEBSKI ET AL
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Main Results

Theorem 1 (Equilibrium Distribution). Assume' that the gradient covariance is isotropic,

i.e. C(0) = o1, where o2 is a constant. Then the equilibrium distribution of the stochastic dif-
ferential equation 1 is given by

2L(9))

no?

P(B) = P() exp (— (2)

where n = % and Py is a normalization constant, which is well defined for loss functions with Lo
regularization.

N : learning rate, S: batch size

n= 1 is @ measure of the noise in the system set by the choice of learning rate and batch

size S .

THREE FACTORS INFLUENCING MINIMA IN SGD, JASTRZEBSKI ET AL
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Theorem 2 (Probability of ending in region near minima 0 4). Assume the loss is locally strictly
convex with Hessian Hy and loss L at a minimum 0 5. Then the unnormalized probability of
ending in minima 0 4 is

i L 2L 4 )
= ———-- X —_—
ba det H 4 b no?

where n = < is the noise used in the SGD process to reach 6 4.

n
S

DA det Hp 2
Pa Ln— L
b \/de =y p(n02< 5 A>)

THREE FACTORS INFLUENCING MINIMA IN SGD, JASTRZEBSKI ET AL
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Deep Networks: Three Theory Questions

* Approximation Theory: When and why are deep
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