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• Review of last lecture

• Theories behind Machine Learning
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Deep Networks: Three Theory Questions
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• Approximation Theory: When and why are deep 
networks better than shallow networks?

• Optimization Theory: What is the landscape of the 
empirical risk?

• Learning Theory: How can deep learning not overfit?

[Tomasi Poggio in STATS385]
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Deep and Shallow Networks: Universality
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Classical learning theory and Kernel Machines
(Regularization in RKHS)
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Classical kernel machines are equivalent to 
shallow networks
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Curse of dimensionality
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Mhaskar, Poggio, Liao, 2016
[Tomasi Poggio’s lecture in STATS385]
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Hierarchically local compositionality
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Intuition
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• The family of compositional functions are easier to 
approximate (can be approximated with less 
parameters)

• Deep learning leverages the compositional structure

• Why compositional functions are important for 
perception?
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Locality of constituent functions is key: CIFAR
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Other perspectives of why deep is good
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The main result of [Telgarsky, 2016, Colt] says 
that there are functions with many oscillations 
that cannot be represented by shallow networks 
with linear complexity but can be represented 
with low complexity by deep networks.
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Proof sketch
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The shape of objective function to be optimized
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Two challenging cases for optimization
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Hessian characterizes the shape at bottom

    Hao Su                                                 Lecture      - 204



1/9/2018

Critical points

    Hao Su                                                 Lecture      - 21

‖∇L(w)‖=0
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Critical points
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• If all eigenvalues are positive the point is called a local minimum
• If r of them are negative and the rest are positive, then it is called a saddle 

point with index r. 
• At the critical point, the eigenvectors indicate the directions in which the 

value of the function locally changes. 
• Moreover, the changes are proportional to the corresponding -signed- 

eigenvalue.
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Critical points
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• Classical optimization theory mostly assumes Hessian 
non-degenerated

• Is this the case for machine learning loss functions? 
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Spectrum of Hessian for an MLP
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• 5K parameters in total

EMPIRICAL ANALYSIS OF THE HESSIAN OF OVER- PARAMETRIZED NEURAL NETWORKS, Sagun et al.
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An explanation

EMPIRICAL ANALYSIS OF THE HESSIAN OF OVER- PARAMETRIZED NEURAL NETWORKS, Sagun et al.
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Rank 1 Vanish
(claimed by author)

If you are interested, check it!
(get credit)

An explanation

there are at least M − N many trivial eigenvalues of the Hessian!

EMPIRICAL ANALYSIS OF THE HESSIAN OF OVER- PARAMETRIZED NEURAL NETWORKS, Sagun et al.
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Relation between #params and eigenvalues
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• Growing the size of the network with fixed data, 
architecture, and algorithm.

• 1K samples from MNIST

“the large positive eigenvalues depend on data, so that their number should not, in 
principle, change with the increasing dimensionality of the parameter space.”
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Relation between #params and eigenvalues
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“increasing the number of dimensions keeps the ratio of small negative eigenvalues 
fixed.”

EMPIRICAL ANALYSIS OF THE HESSIAN OF OVER- PARAMETRIZED NEURAL NETWORKS, Sagun et al.
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Deep Networks: Three Theory Questions
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• Approximation Theory: When and why are deep 
networks better than shallow networks?

• Optimization Theory: What is the landscape of the 
empirical risk?

• Learning Theory: How can deep learning not 
overfit?
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Existing theories are insufficient
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• Regularization
• VC dimension
• Rademacher complexity
• Uniform stability
• …
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A Statistical Mechanics Analysis
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SGD:
Assumptions:

THREE FACTORS INFLUENCING MINIMA IN SGD, JASTRZEBSKI ET AL
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Main Results
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is a measure of the noise in the system set by the choice of learning rate and batch 
size S .

    : learning rate, S: batch size

THREE FACTORS INFLUENCING MINIMA IN SGD, JASTRZEBSKI ET AL

η

n = η
S
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THREE FACTORS INFLUENCING MINIMA IN SGD, JASTRZEBSKI ET AL
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