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Agenda

* Motivation of Building Deeper Networks
* Ideas in Deep Net Architectures

* Deep Learning Practice (Vignesh Gokul)
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Neural Network: A Compositional Function
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Model: Multi-Layer Perceptron (MLP) o' = W (Waf Wiz +b1) +b2) + bs)

Loss function: L2loss l(y,y') = (y—y')°
Optimization: Gradient descent W=W — 773—5%/
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Universal Approximation Theorem

A three-layer network approximates any continuous function

Let <p() be a nonconstant, bounded, and monotonically-increasing continuous function. Let I,,, denote the m-
dimensional unit hypercube [0, l]m. The space of continuous functions on I, is denoted by C(I,,, ). Then, given any
function f € C(I,,) and € > 0, there exists an integer IV, real constants v;,b; € R and real vectors w; € R™,
where ¢ = 1,---, N, such that we may define:

N
F(z) =) v (wfz+b)

i=1
as an approximate realization of the function f where f is independent of ¢; that is,
|F(z) — f(z)| <e

for all z € I,,,. In other words, functions of the form F(z) are dense in C(I,;,).
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Universal Approximation Theorem

A three-layer network approximates any continuous function

Let <p() be a nonconstant, bounded, and monotonically-increasing continuous function. Let I,,, denote the m-
dimensional unit h i : - :

function f € C(I,

weei =1, § At the cost of many parameters

N

F(z)=Y and

i=1

as an approximate MOre dlfflCUIt tO flt
|F(z) — f(=

for all z € I,,,. In other words, functions of the form F(z) are dense in C(I,;,).

Then, given any
s w; € R™,
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A Principle in Learning Algorithm Design

- Overfitting is correlated with the complexity of learning model

In exponential family, Bayesian Information Criterion (BIC)

for Model Selection . smaller is better
/

—2-Inp(x| M)=BIC==2-InL+k-In(n)+0(1)

lay

- [, =the maximized value of the likelihood function of the model , i.e. , where é are
the parameter values that maximize the likelihood function;

- X =the observed data;

- n =the number of data points in X, the number of observations, or equivalently,
the sample size;

- k =the number of parameters estimated by the model.
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A Principle in Learning Algorithm Design

- Overfitting is correlated with the complexity of learning model

In exponential family, Bayesian Information Criterion (BIC)

for Model Selection . smaller is better
/

—2-Inp(x| M)=BIC=12-InL} k-In(n)+O(1)
Complex model decreases this term

lay

- [, =the maximized value of the likelihood function of the model , i.e. , where é are
the parameter values that maximize the likelihood function;

- X =the observed data;

- n =the number of data points in X, the number of observations, or equivalently,
the sample size;

- k =the number of parameters estimated by the model.
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A Principle in Learning Algorithm Design

- Overfitting is correlated with the complexity of learning model

In exponential family, Bayesian Information Criterion (BIC)
for Model Selec’u?} Smaller is better complex model increases this term

—2-Inp(x|M)=BIC=}2-InL - In(n)+O0(1)
Complex model decreases this term

lay

- [, =the maximized value of the likelihood function of the model , i.e. , where é are
the parameter values that maximize the likelihood function;

- X =the observed data;

- n =the number of data points in X, the number of observations, or equivalently,
the sample size;

- k =the number of parameters estimated by the model.
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A Principle in Learning Algorithm Design

- Overfitting is correlated with the complexity of learning model

Probably Approximately Correct (PAC) theory

1 v 7
Pr (test error < training error - \/ N [D (log(%) + 1) — log(%)]) =1-mn,

where D is the VC dimension of the classification model, 0 < 7 < 1, and
NN is the size of the training set (restriction: this formula is valid when

D < N.When D is larger, the test-error may be much higher than the
training-error. This is due to overfitting).

[from Wikipedia]
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Occam’s Razor Principle

Entia non sunt multiplicanda praeter necessitatem.

William of Ockham, 14th century [I*

Suppose there exist two explanations |
for an occurrence. In this case the
simpler one is usually better.

[from Wikipedia]
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The Intuition behind Pushing Dee

rrrrrrrrr

0if x<0 | o
\ ReLUMx)=4
xif x>=0 | 1
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The Intuition behind Pushing Dee

rrrrrrrrr

0if x<0 | o
\ ReLUMx)=4
xif x>=0 | 1

y= ZReLU(X—HI.)

01 92 96 X

piece-wise linear, 6 knots
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The Intuition behind Pushing Deep
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The Intuition behind Pushing Deep
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X
piece-wise linear, can have 9 knots!
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The Intuition behind Pushing Deep
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Interpretation I: With the same number of parameters,
create combinatorial data flow
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The Intuition behind Pushing Deep
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Interpretation I: With the same number of parameters,
create combinatorial data flow

Interpretation |l: Abstract data progressively
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NIPS 2017 Debate

Medium

.J  Synced

‘. In-Depth Al Technology & Industry Review www.syncedreview.com | www.jiqizhixin.com
xxxxx Dec 12,2017 - 4 min read

“Machine Learning is the new electricity.”

LeCun vs Rahimi: Has Machine Learning
- Andrew Ng Become Alchemy?

“Machine Learning has become alchemy.”

- Ali Rahimi (at NIPS 2017)

Sign




IDEAS IN DEEP NET ARCHITECTURES

UCSan Diego




What people think | am What | actually
doing when | “build a deep do...
learning model”
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Contents

fully connected, RelLU,
conv, pooling,

MLP, LeNet,
AlexNet, VGG, ResNet
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Multi-Layer Perceptron

Fully Connected

http://playground.tensorflow.org/
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e The first learning machine:

the Perceptron Built at @
. =
Cornell in 1960 S R
m
e The Perceptron was a % /
. . - Q)
(binary) linear classifier on =1 Wi
: S From LeCun’s Slides
top of a simple feature
N
extractor yesign| S w7 X)+b
i=1 - w0
impulses carried ST, neuro>n. synapse
toward cell body branches Wox(
dendrites (Y of axon
( ) \ -~ cell body f(zi:wwﬂrb)
nucleus axon ::;%Ls output axon
impulses carried \\j ?ucr?cvt?éfn

\ Wo X
away from cell body i

From CS231N
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08 0‘55 Tanh
0.6E : tanh(X) = 20(2X) —1

Sigmoid M 1o =5 : 5 10
o(x) = 1/(1 + e-X)JZ; j

Major drawbacks: Sigmoids saturate and Kkill gradients

From CS231N
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f(x) = max(0, x) f o

4F

ReLU (Rectified Linear Unit) | &

0.254

L L
-10 -5 5 10 g

Epochs

+ Cheaper (linear) compared with Sigmoids

(exp) _ _ A plot from Krizhevsky et al.

+ No gradient saturation, faster in paper indicating the 6x
convergence _ improvement in convergence

- “Dead” neurons if learning rate set too with the ReLLU unit compared to
high the tanh unit.

Other Non-linear Op:

Leaky ReLU, J(*) = 1(x < 0)(ax) + T(x >= 0)(x) From CS231N

MaxOut max(w] x + by, wix + by)
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Convolutional Neural Network : LeNet (1998 by LeCun et al.) Fully Connected
Convolution

Non-linear Op

Pooling
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Shared Weights &

Fully Connected NN in high dimension Convolutions:
Exploiting Stationarity

4 Example: 200x200 image

M Example: 200x200 image » 400,000 hidden units with
» Fully-connected, 400,000 hidden units = 16 billion parameters 10x10 fields = 1000
» Locally-connected, 400,000 hidden units 10x10 fields = 40 params
million params _ » 10 feature maps of size
» Local connections capture local dependencies 200%x200. 10 filters of size
4

10x10

Slide from
LeCun
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Convolution

Stride 1 Stride 2

From CS231N

Pad 1 < > Pad1 ™.

Stride 2 R Stride1 <% >

- From vdumoulin/
conv_arithmetic
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Pooling layer (usually inserted in between
conv layers) is used to reduce spatial size of
the input, thus reduce number of parameters
and overfitting.

224x224x64
112x112x64
pool : Single depth slice
11124
max pool with 2x2 filters
n SemGE 7 | 8 and stride 2 6|8
1 3 | 2 ] 3|4
> N 112 1 | 2 S
e downsampling
112 >
224 y

Discarding pooling layers has been found to be important in training good
generative models, such as variational autoencoders (VAES) or generative
adversarial networks (GANS).

It seems likely that future architectures will feature very few to no pooling
layers. From CS231N
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LeNet (1998 by LeCun et al.)

Fully Connected

Convolution

Non-linear Op

Pooling

C3: 1 maps 16@10x10
S4. 1. maps 16€05x5

CS.layer g6 layer OUTPUT
84 10

C1. feature maps
INPUT
32432 6@D28x28

S2 1. maps

&@14x14 120

il |

| Full conrtoction | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
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AlexNet (2012 by Krizhevsky et al.)

@ 8 layers: first 5 convolutional, rest fully connected
@ RelU nonlinearity

@ Local response normalization

@ Max-pooling

@ Dropout

S RN\~ e g 3 i v
S 5 \\.‘ A B \\ | I | PP
5 27

13 13 13
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128 P e — —

224 5 31 EEENE A 3
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.| . 57 e 3|\ iR 13 dense dense
e .....-...‘.‘:. 3 --_._._...-"-‘-.:“
155 - 1000
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Strid Max 128 Max pooling

of 4 pooling pooling
3 48

h 4

Source: [Krizhevsky et al., 2012]
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Source: [Srivastava et al., 2014]

Standard Neural Net

a

BT
S

@ Zero every neuron with probability 1 —

@ At test time, multiply every neuron by p
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AlexNet (2012 by Krizhevsky et al.) [Donoho et al, STATS385]

@ Stochastic gradient descent

@ Mini-batches

@ Momentum

@ Weight decay (/5 prior on the weights)

Filters trained in the first layer

Source: [Krizhevsky et al., 2012]
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AlexNet (2012 by Krizhevsky et al.)

@ The number of training examples is 1.2 million
@ The number of parameters is 5-155 million
@ How does the network manage to generalize?
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VGG (2014 by Simonyan et al.)

@ Deeper than AlexNet: 11-19 layers versus 8

@ No local response normalization

@ Number of filters multiplied by two every few layers

@ Spatial extent of filters 3 x 3 in all layers

@ Instead of 7 x 7 filters, use three layers of 3 x 3 filters

e Gain intermediate nonlinearity
e Impose a regularization on the 7 x 7 filters

/" 56|x 56 x 2!
s ’ ')!“ A
vy 9
Yy 312

7/
vy
(1 ¢ —5—"7“ L8 C 1 x1x4096 1x1 %1000
7 Fiot
» ‘; """"

ﬂ convolution+ReLLU
] max pooling
fully connected+RelLU

| softmax

Wy

Hao Su Lecture 2 - 35



ResNet (2016 by Kaiming He et al.)

@ Formally, deeper networks contain shallower ones (i.e.
consider no-op layers)

@ Observation: Deeper networks not always lower training
error

@ Conclusion: Optimization process can’t successfully infer
no-op
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ResNet (2016 by Kaiming He et al.)

VGG-19 34-layer plain 34-layer residual
image. Image Image
—

@ Solves problem by adding ==

pool, /2
1 1 :::":z :um!«m
v
pool, /2 pocl, /2
:;w:; JlJC:H,!“ mu!n,u
@ Very deep: 152 layers S e
¥
[[T33conv, 2% | [ammes |
¥
@ No dropout R
[ m%m,u
poal, /2 [ 3acom,128,2 |
st | Ma:w,su ] [ ma-:n,m ]
[ 3acny,s12 [ 33,128
¥
. . [ 3acom, sz | [ 3acnv, 128
@ Batch normalization Crte  Cuis
=
: ME:I!'
oot pool, /2 [ mw!.zss./z
[ 33com,s2 | [ mn{wn ]
[ :dm;n.su ] [ h!n-'n.lss ]
] [ mu;n.su ] [ kzm;v-.zss ]
weight layer e R
¥
[ 3acony, 256
l relu -
[ mcu{.lss ]
weight layer =
[ 3aconv, 256
e pool, /2 [ mumzsﬂﬂ
[ :n-'w:: ] [ 3acms2 |
W*W.
e
A1
[ 3,52
el —— .
Source: Deep Residual Learning for Image Recognition S i - G-
——
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Algorithm 2 Batch normalization [loffe and Szegedy, 2015]

Input: Values of = over minibatch z; ... x5, where x is a certain
channel in a certain feature vector
Output: Normalized, scaled and shifted values y; ... yp

. 1 «—B
.2 1 B 9
2. 0% = g5 b1 (xp — )
3: Ip = AL
Voite
4: yp = yTp + B

@ Accelerates training and makes initialization less sensitive
@ Zero mean and unit variance feature vectors
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ResNet (2016 by Kaiming He et al.)

[Donoho et al, STATS385]

28.2

152 layers

\ 16.4

\ 22 layers ] [ 19 Iayers

357

ILSVRC'15  ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

[He et al., 2016]
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