

Lecture 1:

Introduction

Instructor: Hao Su

Jan 9, 2018

Welcome to CSE291-I!

Robotics

Augmented Reality

Autonomous driving

Medical Image Processing

Machine Learning

Traditional Programming

Machine Learning

Traditional Programming

Machine Learning

Machine Learning

Traditional Programming

Made Possible By

Many Successes: Image Classification

Alexnet

But Also ...

- Speech understanding
- Natural language processing

3D Perception requires "Knowledge" of 3D World

Traditional 3D Vision

Multi-view Geometry: Physics based

Hao Su

3D Learning: Knowledge Based Example I: Monocular Reconstruction

3D Learning: Knowledge Based Example I: 3D Illusion

PUZZLING **OPTICAL ILLUSIONS** Thomas Crawford

Visual Cues are Complicated

Acquire Knowledge of 3D World by Learning

Bridge Human and Computer Understanding

Human understanding and situational awareness comes from

- having **models** of the world
- relating current sensory inputs to past experience

Both assistive and independent intelligent agents need to have a deep understanding of the physical world

AI Perspective of 3D Understanding

Towards **interaction** with the physical world, 3D is the key!

3D Analysis

Classification

Segmentation (object/scene)

Correspondence

3D Synthesis

Monocular 3D reconstruction

Shape completion Shape modeling

3D-based Knowledge Transportation

Intuitive Physics based on 3D Understanding

Machine Learning on 3D: A New Rising Field

Related Courses @ UCSD

- CSE258: Machine Learning and Recommender Systems
- CSE253: Neural Networks
- CSE250A: Probabilistic Models
- CSE250B: Learning Algorithms

• Let me know more!

Syllabus

- Introduction to Machine Learning and Deep Learning
- Shape Representation, Geometry Parameterization, Machine Learning on Extrinsic Geometry
- Simulation for Learning
- Graph Laplacian and Intrinsic Geometry
- Map Networks
- Topological Data Analysis

Syllabus (Week 1-2)

Introduction to Machine **Learning** and Deep Learning Machine learning paradigm

- Optimization, Gradient Descent, Back Propagation
- Linear Classifier, k-NN Classifier
- Multi-layer Perceptron, Convolutional Neural Network (CNN)
- Why deep learning is more effective?
- Non-convex Optimization Issues in Deep Learning

Syllabus (Week 3-4)

Shape **Representation**, Geometry Parameterization, Machine Learning on Extrinsic Geometry

- Multi-view Representation, the Novel-view Synthesis Problem
- Volumetric Representation, 3D CNN
- Parametric Representation of Surfaces, Differential Geometry
- Point Cloud Representation, EMD, PointNet
- Shape Grammar, Procedural Modeling

Syllabus (Week 5)

Simulation for Learning

- Render for CNN
- Domain Adaptation, GAN
- Intuitive Physics

Syllabus (Week 6-7)

Graph Laplacian and Intrinsic Geometry

- Spectral Graph Theory
- Extrinsic vs Intrinsic Geometry
- Laplacian-Bertrami operator
- Heat Kernel and Wave Kernel signatures
- Graph CNNs, Deep Learning on Manifolds

Syllabus (Week 8-9)

Map Networks (Analysis of Shape Collection)

- Rigid and Non-rigid Shape Registration
- Functional Map, Canonical Correlation Analysis
- Cycle Consistency
- Functional Map Network, Deep Functional Map Network
- Unsupervised Learning by Map Networks, Cycle GAN
- Map Networks on Shape Parts
- Map Networks across Data Domains (Image Captioning, Joint image-shape Networks)

Syllabus (Week 10)

Topological Data Analysis

- Topology Review, Complexes
- Homology Groups, Persistent Homology

Who we are?

Instructor: Hao Su

Teaching Assistant: Vignesh Gokul

Hao Su

Logistics

Course website announced: Link

- Related materials
- Announcements
- Lecture Slides
- Office hour and location

Questions? Piazza

Philosophy

- State-of-the-art
 - We hope that you will find opportunities to publish by taking this course
- Practical
 - Bring you first-hand experience in 3D learning by programming assignments
- Foundational
 - Introduce knowledge of broad related fields in a friendly language

Grading policy

Grading (tentative)

- In-class quiz (~10 times): 10%
- Homework (4 assignments): 50%
- Course project presentation: 20%
- Course project writeup: 20%
- Best paper award (Top 3): 10% bonus
- There will not be a final exam

Late days: in total 7 days

Pre-requisite

- Try to be as self-contained as possible
- Proficiency in Python and Matlab
- Calculus, Linear Algebra
- Machine learning
 - Classification
 - Optimization

Introduction to Machine Learning and Deep Learning

Common Task Framework (1980's)

Crucial methodology driving predictive modeling's success An instance has the following ingredients:

- Training dataset, a list of observations (feature, label) pairs
- Competitors whose goal is to learn a predictor from the training set (learner)
- Scoring referee

See Mark Liberman's description (Liberman, 2009).

CTF Lifestyle - 1

- 1. Researchers set up local copies of Challenge
 - Data Training, Test carved out of public dataset
 - Scoring same as challenge scoring rule
- 2. Researcher's job: 'tuning models'
 - Think up a family of model variations 'tweak's
 - Run a full 'experiment' suite of tweaks 'grid'
 - Score each tweak
 - Submit best-scoring result to central authority
- 3. Successful researchers perpetually motivated by *Game-ification*: tweaking, scoring, winning.
- 4. Researchers who tweak more often, win more often!.
- 5. If easier to implement tweaks and faster to evaluate them, more likely to win!.

CTF Lifestyle - 2

Instance of Common Task Framework

- ImageNet (subset):
 - 1.2 million training images
 - 100,000 test images
 - 1000 classes
- ImageNet large-scale visual recognition Challenge

Neural Network Architecture

Formally,

Dataset: $\mathfrak{T} = \{(x_i, y_i)\}_{i=1}^n$

Learner:
$$y = f(x; \theta)$$
 e.g. $y = w^T x$

Referee (loss function): L(y, y')e.g. $L(y, y') = (y - y')^2$

Learning as an Optimization Problem

minimize
$$\sum_{i} L(f(x_i; \theta), y_i)$$

In the context of machine learning, "learning" means to the search for the optimal prediction rule. e.g.,

- In classification trees, we search for the tree structure, decision variable at each node, and split value
- In linear regressor, we search for the optimal weights by convex opt

CTF Lifestyle

FROM PERCEPTRON TO DEEP LEARNING

Perceptron

Imag

Thermal Infrared

Depth Scan

Audio

Can we automatically learn "good" feature representations?

The traditional model of pattern recognition (since the late 50's)
Fixed/engineered features (or fixed kernel) + trainable classifier

End-to-end learning / Feature learning / Deep learning

Trainable features (or kernel) + trainable classifier

From Y. LeCun's Slides

Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Mainstream Modern Pattern Recognition: Unsupervised mid-level features

Deep Learning: Representations are hierarchical and trained

From Y. LeCun's Slides

It's deep if it has more than one stage of non-linear feature transformation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

From Y. LeCun's Slides

ImageNet 1000 class image classification accuracy

Hao Su

A SIMPLE NEURAL NETWORK

A Simple Neural Network

Use recent three days' average temperature to predict tomorrow's average temperature.

Image from CS231N

A Simple Neural Network

forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

From CS231N

Neural Network: Forward Pass

$$y' = W_3 f(W_2 f(W_1 x + b_1) + b_2) + b_3)$$

From CS231N

From CS231N

Minimize: $L(x, y; W, b) = \sum_{i=1}^{N} (W_3 f(W_2 f(W_1 x_i + b_1) + b_2) + b_3) - y_i)^2$ Given N training pairs: $\{x_i, y_i\}_{i=1}^{N}$

Minimize: $L(x, y; W, b) = \sum_{i=1}^{N} (W_3 f(W_2 f(W_1 x_i + b_1) + b_2) + b_3) - y_i)^2$ Given N training pairs: $\{x_i, y_i\}_{i=1}^{N}$

Non-convex optimization :(

Minimize: $L(x, y; W, b) = \sum_{i=1}^{N} (W_3 f(W_2 f(W_1 x_i + b_1) + b_2) + b_3) - y_i)^2$ Given N training pairs: $\{x_i, y_i\}_{i=1}^{N}$

Non-convex optimization :(Use gradient descent!

Parameter update example:

$$W_3 = W_3 - \eta \frac{\partial L}{\partial W_3}$$

Minimize: $L(x, y; W, b) = \sum_{i=1}^{N} (W_3 f(W_2 f(W_1 x_i + b_1) + b_2) + b_3) - y_i)^2$

$$W_3 = W_3 - \eta \frac{\partial L}{\partial W_3}$$

Let $x_i^{(3)} = f(W_2 f(W_1 x_i + b_1) + b_2)$, cached after the forward pass, What's the prediction?

 $\hat{y}_i = W_3 x_i^{(3)} + b_3$ Then $L = \sum L_i = \sum_i (\hat{y}_i - y_i)^2$ $\frac{\partial L_i}{\partial W_3} = \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial W_3} = 2(\hat{y}_i - y_i) x_i^{(3)}$

Back-propagation is equivalent to gradient descent by chain rule

A Simple Neural Network

Model: Multi-Layer Perceptron (MLP) $y' = W_3 f(W_2 f(W_1 x + b_1) + b_2) + b_3)$ **Loss function:** L2 loss $l(y, y') = (y - y')^2$ **Optimization:** Gradient descent $W = W - \eta \frac{\partial L}{\partial W}$