
Lecture 18:
Map Network and 

Cycle Consistency

Instructor: Hao Su

Mar 13, 2018

Slides ack: Qixing Huang



A natural constraint on maps is that  
they should be consistent along cycles

Q. Huang, G. Zhang, L. Gao, S. Hu, A. Bustcher, and L. Guibas. An Optimization Approach for Extracting and 
Encoding Consistent Maps in a Shape Collection, SIGGRAPHAsia’ 12
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Literature on leveraging cycle-
consistency for map synchronization

• Spanning tree optimization [Huber et al. 01, Huang 
et al. 02] 

• Sampling inconsistent cycles [Zach et al. 10, Nyugen 
et al. 11, Zhou et al. 15] 

• MRF formulation [Cho et al. 08, Crandel et al. 11, Huang 
et al. 12]



Map synchronization as  
constrained matrix optimization

Noisy measurements of matrix blocks

Q. Huang and L. Guibas, Consistent Shape Maps via Semidefinite Programming, Sym. on Geometry Processing’13 
Y. Chen, L. Guibas, Q. Huang, Near-Optimal Joint Object Matching via Convex Relaxation, ICML’14 
Q. Huang, F. Wang, L. Guibas, Functional map networks for analyzing and exploring large shape collections, 
SIGGRAPH’14



Algorithms



Permutation synchronization  

• Input:  
– n objects, each object has m points 
– p2p maps along an object graph  

• Output: one-to-one maps between all pairs of 
objects 

– Cycle-consistent 
– Close to the input maps



Matrix representation of maps
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➢ Diagonal blocks are 
identity matrices 

➢ Symmetric 

➢ Off diagonal blocks are 
permutation matrices



The equivalence between cycle-
consistency and positive semidefiniteness

Cycle-consistent



SDP =>  Cycle-consistency

indices: (s, im+s, jm+s)



Parametrizing cycle-consistent maps

Cycle-consistent



Relaxing the permutation constraints for 
convexity

Cycle-consistent

The convex hull of permutation matrices

Tight relaxation!



Objective Function

X input
i j

X i j

L1-norm:



Semidefinite programming relaxation 
for permutation synchronization 

https://github.com/huangqx/CSP_Codes



Deterministic guarantee

• Theorem: Suppose the input maps are noisy 
perturbations of some underlying ground-truth 
maps.  Then we can recover the underlying 
maps if
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Optimality when the object graph G is a 
clique 

• 25% incorrect correspondences 
• Worst-case scenario 
– Two clusters of objects of equal size 
– Wrong correspondences between objects of different 

clusters only (50%)



Justification of maximizing 
for map graph construction

Imageweb [Heath et al 10] Fuzzy correspondences 
on shapes [Kim et al 12]



Randomized setting

• Generalized Erdős–Rényi model: 
– pobs:  the probability that two objects connect 
– ptrue:  the probability that a pair-wise map is correct 
– Incorrect maps are random permutations 

• Theorem [CGH’14]: The underlying 
permutations can be recovered w.h.p if



Optimality when m is a constant

• Exact recovery condition: 

• Information theoretic limits [Chen et al 15]: 

No method works if 



Comparison to a generic low-rank 
matrix recovery method 

Phase transitions in empirical success probability

Permutation synchronization RPCA

(pobs =1)



Random-sign condition breaks  
when perturbing permutations

• RPCA can handle dense corruption if the perturbations 
exhibit random sign pattern, yet 

• The map constraints incur a quotient space 
defined by 

• The expectation under this quotient space



How to handle partial maps?



Reformulation

Q. Huang, Y. Chen, and L.Guibas, Scalable Semidefinite Relaxation for Maximum A Posterior Estimation, 
ICML’ 14



Partial point-based map 
synchronization 

Size of the universe

Step II:

Step I: Spectral method:  
              m   <=   #dominant eigenvalues of Xinput after trimming  
                                    



Exact recovery condition

• Randomized model: n objects, universe 
size m 
– Each object contains a fraction    pset    of m elements 
– Each pair is observed w.p.    pobs 

– Each observed is randomly corrupted w.p.   1 – ptrue 

• Theorem. When                   , the underlying 
maps can be recovered with high probability if 

 



Rotation synchronization 

Cycle-consistent

The equivalence also holds for rotations



What is the convex hull of SO(3)?

http://www.mit.edu/~parrilo/pubs/talkfiles/
FoCM.pdf

The dimension of the convex hull is 9



Robust rotation synchronization [Wang and 
Singer 13]

• Formulation: 

• Exact recovery condition [Wang and Singer’ 
13]:



Ongoing effort on non-convex 
optimization (SO(3))

• Initial solution via connection Laplacian 

• Refine the solution via gradient descent of 
reweighted least squares:



Applications



Map synchronization versus learning 
pair-wise matching

  Pair-wise 
(RANSAC)

  Pairwise 
(Learning) 
  Leordeanu et al. 
12

         Joint Matching 
         (from RANSAC)

             64.1%               94.8%                  99.9%

CMU Hotel dataset



Follow-up works at CVPR/ICCV

Flowweb [Zhou-Lee-Yu-Efros 15] Fast Alternating Minimization 
[Zhou-Zhu-Daniilidis 15]



Similar behavior on establishing shape 
correspondences



How to find relations among objects 
exhibit significant variabilities



The functional representation  
[Ovsjanikov et al. 12]

Point features Segments Descriptors

Indicator functionsDelta functions

The space of functions is linear (dim = #pixels)



Reduced functional space

• Basis of functional space 
– First M Laplacian eigenfunctions of a 

graph of super-pixels 

• Reconstruct any function with 
small error (M=30)

Reconstruction error

Binary indicator functionReconstructed function Thresholded  
reconstructed function



Functional map representation

Segmentation correspondence

function correspondence

Functional map



Functional map computation

Can be computed from point correspondences 
and/or descriptors by solving a linear system 



The effect of enforcing consistency on 
functional maps

Source

Target

Without  
consistency

With 
consistency



Joint image segmentation as  
consistent normalized-cuts

• Two objectives for optimizing segmentations 
– Aligning edge features 

– Segmentation consistency 

• Joint optimization: 



Kuettel’12 (Supervised) Unsupervised  
Fmaps

Image+transfer Full model

87.6 91.4 90.5

Class Joulin 
’10

Rubio 
’12

Vicente 
’11

Fmaps 
-uns

Alaska Bear 74.8 86.4 90.0 90.4

Red Sox Players 73.0 90.5 90.9 94.2

Stonehenge1 56.6 87.3 63.3 92.5

Stonehenge2 86.0 88.4 88.8 87.2

Liverpool FC 76.4 82.6 87.5 89.4

Ferrari 85.0 84.3 89.9 95.6

Taj Mahal 73.7 88.7 91.1 92.6

Elephants 70.1 75.0 43.1 86.7

Pandas 84.0 60.0 92.7 88.6

Kite 87.0 89.8 90.3 93.9

Kite panda 73.2 78.3 90.2 93.1

Gymnastics 90.9 87.1 91.7 90.4

Skating 82.1 76.8 77.5 78.7

Hot Balloons 85.2 89.0 90.1 90.4

Liberty Statue 90.6 91.6 93.8 96.8

Brown Bear 74.0 80.4 95.3 88.1

Average 78.9 83.5 85.4 90.5

iCoseg data set 
New unsupervised method 
▪ Mostly outperforms other 

unsupervised methods 
▪ Sometimes even 

outperforms supervised 
methods 

▪ Supervised input is easily 
added and further improves 
the results

Supervised 
method



MSRC
Unsupervised performance comparison

Supervised performance comparison

Class N Joulin 
’10

Rubio 
’12

Fmaps 
-uns

Cow 30 81.6 80.1 89.7

Plane 30 73.8 77.0 87.3

Face 30 84.3 76.3 89.3

Cat 24 74.4 77.1 88.3

Car(front) 6 87.6 65.9 87.3

Car(back) 6 85.1 52.4 92.7

Bike 30 63.3 62.4 74.8

Class Vicente 
’11

Kuettel 
’12

Fmaps 
-s

Cow 94.2 92.5 94.3

Plane 83.0 86.5 91.0

Car 79.6 88.8 83.1

Sheep 94.0 91.8 95.6

Bird 95.3 93.4 95.8

Cat 92.3 92.6 94.5

Dog 93.0 87.8 91.3

• PASCAL

Class N L Kuettel 
’12

Fmaps 
-s

Fmaps 
-uns

Plane 178 88 90.7 92.1 89.4

Bus 152 78 81.6 87.1 80.7

Car 255 128 76.1 90.9 82.3

Cat 250 131 77.7 85.5 82.5

Cow 135 64 82.5 87.7 85.5

Dog 249 121 81.9 88.5 84.2

Horse 147 68 83.1 88.9 87.0

Sheep 120 63 83.9 89.6 86.5

• New method mostly 
outperforms the state-of-
the-art techniques in both 
supervised and 
unsupervised settings



iCoseg: 5 images per class are shown
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MSRC: 5 images per class are shown



MSRC: 5 images per class are shown



PASCAL: 10 images per class are shown



PASCAL: 10 images per class are shown
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PASCAL: 10 images per class are shown



Aligning multiple protein-protein 
interaction networks

S. Hashemifar, Q. H, J. Xu, ConvexAlign: Joint alignment of multiple networks via convex relaxation, under 
review 

       Human 
   (9006 nodes)

           Fly  
    (8374 nodes)

         Yeast 
    (5674 nodes)

        Celeg 
   (4305 nodes)

       Mouse 
   (2897 nodes)



Consistent and simultaneous  
pair-wise alignments 

Protein 
similarity

Interaction 
preservation

S. Hashemifar, Q. H, J. Xu, ConvexAlign: Joint alignment of multiple networks via convex relaxation, under 
review 



Biologically more accurate than  
existing methods



Concluding remarks



Discussion

• Map synchronization is generalized from  
– Nearest-neighbor 
– Graph-based semi-supervised learning 

• Cycle-consistency provides strong 
regularization for maps



Organized object collections are 
becoming more and more accessible 



Organized object collections are 
becoming more and more accessible 

ShapeNet



Learning object matching

Requires large-scale labeled training data



Map synchronization versus learning 
pair-wise matching

  Pair-wise 
(RANSAC)

  Pairwise 
(Learning) 
  Leordeanu et al. 
12

         Joint Matching 
         (from RANSAC)

             64.1%               94.8%                  99.9%

CMU Hotel dataset



Thank you!


