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Maps and
Correspondences



Maps

Q: X —Y

Map from Xto Y



Maps and Correspondences

» Multiscale
mappings
e Point/pixelagaal
e part level

Maps capture what
IS the same or similar
across two data sets




Map Composition




Problems and Issues

Symmetry, ambiguity, scale, bad data



Non-Convex, Combinatorial Optimization
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multiple minima

n! permutations

Symmetry, ambiguity, scale, bad data



A Potential Way Out

Find alternative representation more amenable to optimization

Redefine the notion of map



Function Spaces
and Functional Maps



A Dual View:
Functions and Operators

#Functions on data

#Properties, attributes,
descriptors, part indicators, etc.

#But also beliefs, opinions, etc

#Operators on functions

#Maps of functions to functions

#Laplace-Beltrami operator on a
manifold M

SIFT flow, C. Liu 2011
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A:C®(M) = C®°(M),Af =div VS

' ' ' heat diffusion
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Laplace Beltrami eigenfunctions



Functional Maps




Starting from a Regular Map ¢

@: lion — cat
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Attribute Transfer via Pull-Back

T(p: cat — lion
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A Contravariant Functor

from cat to lion
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T, is a linear operator (matrix)

Functions on cat are transferred to lion using T,

T, : L*(cat) — L*(lion) 14



Functional Map

Ty : L*(N) — L*(M)

Dual of a
point-to-point map



Bases for a Function Space

Point basis
Finite-element basis

Local bases
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Bases for a Function Space

alivaliilie

Laplace-BeItrami global support
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More Exotic Bases Possible

Textons, wavelets, ...



Ty f(z) + T lg)()

Exploit Linearity

Linear
operator!
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Application of Basis
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Application of Basis
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Functional Map Matrix

. v »
n us

()

i

I

i

22



Functional Map Representation

For a fixed choice of basis functions {¢M} and {¢"}, and a
bijection T : M — N, define its functional representation

as a matrix C, s.t. forall f =) _. aioM, if Te(f) = > bi¢;
then:

b= Ca )

If {pM} and {¢"N} are both orthonormal w.r.t. some inner

product, then
Cij = <TF N>

23



Map Composition

Matrix multiplication



Maps as Linear Operators

#An ordinary shape map lifts to a linear operator mapping the
function spaces

#With a truncated hierarchical basis, compact representations
of functional maps are possible as ordinary matrices

#Map composition becomes ordinary matrix multiplication

#Functional maps can express many-to-many associations,
generalizing classical 1-1 maps
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Laplace-Beltrami
basis

DJ Using truncated



Estimating the Mapping Matrix

Suppose we don’'t know C. However, we expect a pair of
functions r:. s — Rand ¢: N — Rto correspond. Then, C

must be s.t.
Ca~Db

where f=>"a;¢!, g=>_b;oY

Given enough {a;, b;} pairs in correspondence, we can
recover C through a linear least squares system. 26



Plenty of Functions:
Descriptors for Points and Parts

QFor shapes, there are many descriptors with various types
of invariances

| scaled HKS

- v N » o
T T

(a) B

24‘;!;‘—‘/ M
Heat Kernel Signatures (HKS):
[Sun, Ovsjanikov, G. '08]]

(d) () ¢y

Shape Contexts: Spin Images:
[Belongie et al. '00, Frome et al. '04][Johnson, Hebert '99]

Isometric invariance

Rigid invariance (intrinsic)
(extrinsic) Wave Kernel Signatures (WKS):
[Aubry et. al. “11]
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Function Preservation Constraints

Suppose we don’'t know C. However, we expect a pair of
functions r:. s — Rand ¢: N — Rto correspond. Then, C

must be s.t.
Ca~Db

Function preservation constraint is quite general and includes:

© Descriptor preservation (e.g. Gaussian curvature, spin
images, HKS, WKS).

© Landmark correspondences (e.g. distance to the point).
© Part correspondences (e.g. indicator function).

© Texture preservation

28
injection of low-level knowledge or supervision



Commutativity Regularization

In addition, we can phrase an operator commutativity
constraint: given two operators s, : 7(m,R) — F(M,R) and
S F(N,R) — F(N,R).

F(M,R) —~ F(N,R)

s B

F(M,R) —— F(N,R)
Thus: €S, = S,C or ||CS; — S, CJ| should be minimized
Note: this is a linear constraint on C. S, and S, could

be symmetry operators or e.g. Laplace-Beltrami or
Heat operators.
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Operator Commutativity
CA1 ~ Q0

P
Differentiate and then transport

Transport and then differentiate

A KR8 1\'&



Isometry Regularizer

The mapping is isometric, if and only if the functional
map matrix commutes with the Laplacian:

CA; = AsC

Also conformality, area or volume preservation, etc.
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Volume Preservation
Regularizer

The mapping is locally volume preserving, if and only
iIf the functional map matrix is orthonormal.

CTC =1

Rotations/reflections in functions space

32



Conformal Regularization

If the mapping is conformal if and only if:

CTAC = A,

Using these regularizations, we get a very
efficient shape matching method.
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Sparcity in a Localized Basis

Sum of Euclidean
norms of cols

(s /(t)(: .

&tt' - EDI’ e .H""-.Jr

II C (0

Sparse Modeling of Intrinsic Correspondences (Pokrass, Bronstein2, Sprechmann, Sapiro)
34
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General Optimization for Maps

ming  ||CD1 — Ds|3
+al|CAL — AC|5,o]
+B1|C||2,1]

such that [C’TC' = 1

Functional Maps: A Flexible Representation of Maps Between Shapes

Maks Ovsjanikov! ~ Mirela Ben-Chen?  Justin Solomon*  Adrian Butscher  Leonidas Guibas?
! LIX, Ecole Polytechnique ¥ Stanford University
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Figure 1: Horse algebra: the functional representation and map inference algorithm allow us to go beyond point-to-point maps. The source
shape (top left corner) was mapped to the target shape (left) by posing descriptor-based functional constraints which do not disambiguate
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Map Continuity
#Not explicitly enforced

#Implicit in the choice of basis

X Y

o
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From Functional to Point-to-
Point Maps

#Can try transporting delta functions individually --
expensive
Dual

(o) (1),
Primal D z o> §
—> . :
v o) oy

0 = (&7 (), 03 (2), 03" (x),...)



Application: Segmentation
Transfer

38



Map Visualization

Even given amap T : M — N, it is often hard to visualize it.

Common visualizations:

o Connecting (some) points by lines

e Plotting a function f on N and f o T on M.
Question: how to pick a “good” function f.
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Conclusion

#Many geometry processing tasks are best viewed as
linear operators on functional spaces

#Operator composition, inversion and inference all lead to
simple algebraic operations

#Using multiscale bases can improve compactness

#Performing spectral analysis on the operators can reveal
the structure in a way that is easy to visualize

40



Functional Maps

I3

2 4 6 8 10 12 14 16 18 20




Joint Data Analysis

42



Joint Data Analysis

Maps Join Data Together



Individual Maps Can Have Errors

Blended intrinsic maps Learning-based graph matching
[Kimetal | ] [Leordeanu et al. 12]

State-of-the-art techniques

Wrong correspondences



Combining Maps

& Blended intrinsic maps
[Kim et al. 11]

object

Composition

Composition can correct correspondences



Individual Data Set Operations
Can Have Errors

#The interpretation of a particular piece of geometric
data is deeply influenced by our interpretation of other
related data

3D Segmentation 46



The Network View:
Information Transport
Between Visual Data

47



Networks of Images

»

48



Or of Shapes, Or of Both

- = . @)
-sz’: s = f/ el
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Good Correspondences or Maps are
Information Transporters

texture and
parametrization

m = ‘
tati
segmentation } t

and labels

deformation m —> ﬁé

Maps are based on matching




Matching Has Been Extensively
Studied

ACTIONS ON PATTERN ANALYSIS AND MACHINE INTELUG!

Shape Matct
Recognition Usii
Serge Belongie, Member, IEEE, Jiten

tract—\We present a novel approach to measuring similal

ework, the of yis ded by 1) &
o esti an aligning . In oed

e confext, 10 each point. The shape context at a reference

ing a globally discrimi ion. Correspor

ling us to solve for correspondences as an optimal assig
formation that best aligns the two shapes; regularized thi
ose. The dissimilarity between the two shapes is compute
aterm ing the magnitude of the aligning ranst
roblem of finding the stored prototype shape that is maxi
amarks, handwritten digits, and the COIL data set.

x Terms—Shape, object recognition, digit recognition, co
lates.

ODUCTION

R the two handwritten digits in Fig, 1. Regard
:ctors of pixel brightness values and compan
norms, they are very different. However, regard(
they appear rather similar to a human observq
tive in this paper is to operationalize this notion
ilarity, with the ultimate goal of using it as a ba:
ry-level recognition. We approach this as a thre
cess:

lve the correspondence problem between the tv
apes,

¢ the correspondences to estimate an alignii
nsform, and

mpute the distance between the two shapes as
m of matching errors between correspondii
ints, together with a term measuring the magy
de of the aligning transformation.

rart of our approach is a tradition of matchii
 deformation that can be traced at least as far ba
v Thompson. In his classic work, On Growth ai
 Thompson observed that related but not identic

Image Matching via Saliency Region C

Alexander Toshev, Jianbo Shi, and Kosta
Department of Computer and Informati
University of Pennsylvania

Philadelphia, PA 19104, USA

toshev@seas.upenn.edu, jshi@cis.upenn.edu, ki

Abstract

We introduce the notion of co-saliency for image march-
ing. Our matching algorithm combines the discrimina-
tive power of feature correspondences with the descriptive
power of matching segments. Co-saliency matching score
favors correspondences that are consistent with ‘soft’ im-
age segmentation as well as with local point feature match-
ing. We express the matching model via a joint image
graph (JIG) whose edge weights represent intra- as well as
inter-image relati The d spectral components of
this graph lead to simultaneous pixel-wise alignment of the
images and saliency-based synchronization of “soft" image
segmentation. The co-saliency score function, which char-
acterizes these spectral components, can be directly used
as a similarity metric as well as a positive feedback for
updating and establishing new point correspondences. We
present experiments showing the extraction of marching re-
gions and poimtwise correspondences, and the wility of the
global image similarity in the context of place recognition.

1. Introduction

Correspondence estimation is one of the fundamental
challenges in computer vision lying in the core of many

drastically evel
per diagram in

In this wor
matching by n
herence of reg
features across
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1. Each regi
coherence

Learning Graph Matching

Tibério S. Caetano, Li Cheng. Quoc V. Le and Alex J. Smola
Statistical Machine Learning Program, NICTA and ANU
Canberra ACT 0200, Australia

Abstract

As a fundamental problem in pattern recognition, graph
matching has found a variety of applications in the field of
computer vision. In graph matching, patterns are modeled
as graphs and patern recognition amounts to finding a cor-
respondence berween the nodes of different graphs. There
are many ways in which the problem has been formulated,
but most can be cast in general as a quadratic assignment
problem, where a linear term in the objective function en-
codes node compatibility functions and a quadratic term
encodes edge compatibility functions. The main research
Sfocus in this theme is about designing efficient algorithms
for solving approximately the quadratic assignment prob-
lem, since it is NP-hard.

In this paper, we turn our attention 1o the complementary
problem: how to estimate compatibility functions such that
the solution of the resulting graph matching problem best
matches the expected solution that a human would manually
provide. We presemt a method for learning graph maich-
ing: the wraining examples are pairs of graphs and the “la-
bels” are marchings between pairs of graphs. We present
experimental results with real image data which give evi-
dence that learning can improve the performance of stan-
dard graph matching algorithms. In particular, it turns ou
that linear assignment with such a learning scheme may
improve over state-of-the-art quadratic assignment relax-
ations. This finding suggests that for a range of problems
where quadratic assignment was thought to be essential for
securing good results, linear assignment, which is far more
efficient, could be just sufficient if learning is performed.
This enables speed-ups of graph matching by up to 4 orders
of magnitude while retaining state-of-the-an accuracy.

1. Introduction

Graphs are ¢« ly used as abs representations for
complex scenes, and many computer vision problems can
be formulated as an auributed graph matching problem,
where the nodes of the graphs ¢ pond to local f

of the image and edges correspond to relational aspects
between features (both nodes and edges can be attributed,

quadrati ignment problem, which consists in finding
assignment that maximizes an objective function encoc
local compatibilities (a linear term) and structural com|
ibilities (a quadratic term). The main body of researc!
graph matching has then been focused on devising more
curate and/or faster algorithms to solve the problem appi
imately (since it is NP-hard). The compatibility functi
used in graph matching are typically handcrafted.

An interesting question arises in this context. If we
given two attributed graphs, G and G’, should the o
mal match be uniquely determined? For example, asst
first that G and G’ come from two images acquired wi
surveillance camera in an airport’s lounge. Now, assume
same G and G instead come from two images in a phot
rapher’s image database. Should the optimal match be
same in both situations? If the algorithm takes into accc
exclusively the graphs to be matched, the optimal soluti
will be the same' since the graph pair is the same in t
cases. This is how graph matching is approached today.

In this paper we address what we believe to be a lin
tion of this approach. We argue that. if we know the “col
tions™ under which a pair of graphs has been extracted, t
we should take into account how graphs arising in th
conditions are typically matched. However. we do not t
the information on the “conditions™ explicitly into acco!
since this is obviously not practical. Instead. we appro
the problem from a purely statistical inference perspect
First we extract graphs from a number of images acqui
in the same conditions as those for which we want to so
whatever the word “conditions™ mean (e.g. from the sun
lance camera or the photographer’s database). We t
manually provide what we understand to be the opti
matches between pairs of the resulting graphs. This in
mation is then used in a learning algorithm which le:
a map from the space of pairs of graphs to the space
matches. In terms of the quadratic assignment problem,
learning algorithm amounts to (in a loose language) adj
ing the node and edge compatibility functions in a way
the expected optimal match in a test pair of graphs agi
with the expected match they would have had they bee
the training set. In this formulation, the leaming prob

~nf a A wihink le saadlle anlese




Maps vs. Distances/Similarities
Networks vs. Graphs

A B C

“Persistence” of Correspondences



Societies, or
Social Networks of Data Sets

Our understanding of data can greatly benefit from

extracting these relations and building relational networks.

We can exploit the relational network to
« transport information around the network

« assess the validity of operations or interpretations of data (by checking
consistency against related data)

« assess the quality of the relations themselves (by checking consistency
against other relations through cycle closure, etc.)

« extract shared structure among the data

Thus the network becomes the great regularizer in joint
data analysis.
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Consistency of
Network Transport

54



Map Networks for Related Data

Networks of “samenesses”

Path Invariance



Transform Synchronization
Problems

Bandeira, Afonso S. Ten Lectures and Forty-Two Open Problems in the Mathematics of Data Science. (2015).

Path invariance = Cycle consistency



Cycle Consistency

#Maps are consistent along cycles

V2R RN
" ‘X A
ﬂ\) . g \, " \ 1}
o'j ¢ g

57



Cycle Consistency

#Maps are consistent along cycles

Consistent

58



Cycle Consistency

Inconsistent

59



Cycle Consistency

Blended intrinsic maps
[Kim et al. 11]

Composition

60



Cycle Consistency Can Help

Composition

61



The End

62



