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Topic Selection

« Can be analytical

- Systematically analyze when a published work
would falil

« Conclude the causes or provide bounds
« Suggest possible improvements

« Can be Algorithmic
* Propose a new idea based upon existing work
* Or, combine the best of existing approaches

* Or, improve the “state-of-the-art” with solid
experiments
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Characteristics of a Good Research

 Surprising results/discoveries

length contraction, time dilation, mass—energy
equivalence, relativistic mass, a universal
speed limit and relativity of simultaneity

* Inspiring to others that will
breed follow-up work

“theory of special relativity"
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Possible Strategies towards Good Research

« Sharp
* Well-defined problem so that everyone understands
» Tactically designed setting so that
» Crisp conclusion is reachable
» But still generalizable to broad cases

- Simple on paper, but sophisticated in mind
« Simple so that extensible

* Need extensive experiments and sufficient
reasoning to find the simple setting and solution
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How to do Experiments?

» Experiments are the log of conclusions, but not
numbers

* Take iterations — from simple to complicated

» Simple enough to build understanding and form
solid conclusions

* Make small but solid steps to expand
e Simple means:
» Small data, to allow more iterations
» Synthetic data, so that you can control variables
* e.g. Point Set Generation Network
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Scoring Rubric of the Project

« Based upon your presentation and write-up
* Novelty

* problem, approach, discovery
* Intellectual depth

» technical strength

* The key is to show your “commitment” and
“‘understanding” to the problem and results

« Can be incomplete upon deadline

 As long as you can insightfully explain the
motivation, idea, approach, and progress
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Schedule for Final Presentation

* Time: March 20, 2018, 3:00pm to 7:00pm

* If you have any conflict with the schedule, let me
know in advance no later than March 15

 Form: TBD

* Presentation only (~15 min for each team)

* Or spotlight presentation (~5 min) + poster session
» Three best papers will be generated
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Connect Points in R4 and Graph Views of Data

* Points in R¢ * Graph
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Spectral Graph Theory

The spectral graph theory studies the properties of graphs via
the eigenvalues and eigenvectors of their associated graph
matrices: the adjacency matrix and the graph Laplacian and
Its variants.

Both matrices have been extremely well studied from an
algebraic point of view.

The Laplacian allows a natural link between discrete
representations, such as graphs, and continuous
representations, such as vector spaces and manifolds.

The most important application of the Laplacian is spectral
clustering that corresponds to a computationally tractable
solution to the graph partitionning problem.

Another application is spectral matching that solves for graph
matching. 14



More Applications

@ Spectral partitioning: automatic circuit placement for VLSI
(Alpert et al 1999), image segmentation (Shi & Malik 2000),

@ Text mining and web applications: document classification
based on semantic association of words (Lafon & Lee 2006),
collaborative recommendation (Fouss et al. 2007), text
categorization based on reader similarity (Kamvar et al. 2003).

@ Manifold analysis: Manifold embedding, manifold learning,
mesh segmentation, etc.
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Graph Notations and Definitions

We consider simple graphs (no multiple edges or loops),

G ={V,E}:

V(G) ={v1,...,v,} is called the vertex set with n = |V|;
E(G) = {e;;} is called the edge set with m = |£];

An edge e;; connects vertices v; and v; if they are adjacent or
neighbors. One possible notation for adjacency is v; ~ v;;
The number of neighbors of a node v is called the degree of v
and is denoted by d(v), d(vi) = }_,, ., €i;. |f all the nodes of
a graph have the same degree, the graph is regular; The
nodes of an Eulerian graph have even degree.

A graph is complete if there is an edge between every pair of

vertices.
16



Subgraphs

H is a subgraph of G if V(H) C V(G) and E(H) C £(G);

a subgraph H is an induced subgraph of G if two vertices of
V('H) are adjacent if and only if they are adjacent in G.

A clique is a complete subgraph of a graph.

A path of k vertices is a sequence of k£ distinct vertices such
that consecutive vertices are adjacent.

A cycle is a connected subgraph where every vertex has
exactly two neighbors.

A graph containing no cycles is a forest. A connected forest is
a tree.
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k-Partite Graphs

@ A graph is called k-partite if its set O\Q

of vertices admits a partition into k
classes such that the vertices of the
same class are not adjacent. O

@ An example of a bipartite graph. \O
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Adjacency Matrices

@ For a graph with n vertices, the entries of the n x n adjacency
matrix are defined by:

([ A;; =1 if there is an edge e;;
A:=<¢ A;; =0 if there is no edge

A =0
0 1 1 0] Ve O O V2
I 01 1
A= I 1.0 0
_O 1 OO_ V3 OW
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Weighted Matrices

Adjacency matrix (4)
* n X n matrix
- A=[w;ledge weight between vertex x; and x;

X X, X3 Xy Xy X

0.6

* |mportant properties:
— Symmetric matrix
= Eigenvalues are real
= Eigenvector could span orthogonal base




Eigenvalues and Eigenvectors

A is a real-symmetric matrix: it has n real eigenvalues and its
n real eigenvectors form an orthonormal basis.

Let {A\1,..., A, ..., \.} be the set of distinct eigenvalues.

The eigenspace S; contains the eigenvectors associated with
i

i ={x € R"|Ax = \;x}
For real-symmetric matrices, the algebraic multiplicity is equal
to the geometric multiplicity, for all the eigenvalues.

The dimension of S; (geometric multiplicity) is equal to the
multiplicity of A;.

If \i # A\; then \S; and \S; are mutually orthogonal.

Order the eigenvalues from small to large



Functions on Graphs

@ We consider real-valued functions on the set of the graph’s
vertices, f : ¥V — R. Such a function assigns a real number
to each graph node.

@ f is a vector indexed by the graph’s vertices, hence f € R".

@ Notation: f = (f(v1),..., f(vn)) = (f(1),...,f(n)) .

@ The eigenvectors of the adjacency matrix, Ax = Ax, can be
viewed as eigenfunctions.

f(vi)=2 Q O f(v2)=3.5

f(v3)=4.1 ,, O f(ve)=5



Operators and Quadratic Forms

@ The adjacency matrix can be viewed as an operator

g=Af:g(i)=> [f(j)

1~

@ It can also be viewed as a quadratic form:

FIAF =) f@)f()
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Incidence Matrix

@ Let each edge in the graph have an arbitrary but fixed
orientation;

@ The incidence matrix of a graph is a |€] x |V| (m x n) matrix
defined as follows:

[ Vew = —1 if v is the initial vertex of edge ¢
V=4 Ve =1 if visthe terminal vertex of edge ¢
\ Vev = 0 If visnotine

"1 1 0 0 Vi Q v
1 0 -1 0
V=10 -1 1 o0
i O —1 0 +1 ] V3 6 V4
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Discrete Differential Operator

@ The mapping f — s/ f is known as the co-boundary
mapping of the graph.

o (Vf)leis) = f(vj) — f(vi)

(F)-F1)\ [-1 1 0 07 /1))
F=f3) | |1 o0 =1 0 || f
F(3) = f(2) 0 -1 1 0 || /3
\ f(4) = f(2) / 0 -1 0 +1 ]\ f(4))
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Graph (Unnormalized) Laplacian
L=v'v
(L) (03) = Sy, (F (00) = f(07))

Q
)
@ Connection between the Laplacian and the adjacency matrices:

L=D-A

@ The degree matrix: D := D;; = d(v;).

T2 1 -1 0 Vi O O v
-1 3 -1 -1

L=1_1 21 2 o /
5 0 —1 0 1 _ V3 V4
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Degree Matrix

 Degree matrix (D)
* n x n diagonal matrix
e D(i,i)= 2 w;,: total weight of edges incident to vertex x;
J

* |Important application:
— Normalize adjacency matrix
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Laplacian Matrix

L=D-4

e Laplacian matrix (L)
* n x n symmetric matrix

* |Important properties:
— Eigenvalues are non-negative real nUmMbers cerngorn e heorem)
— Eigenvectors are real and orthogonal

— Eigenvalues and eigenvectors provide an insight into
the connectivity of the graph...



Laplacian Defines Natural Quadratic Form of Graphs

TLe= Y (ai) - 2()?

(1,5)eE

[, = ) — A where D is diagonal matrix of degrees

(1—1 0 0\

—1 2 -1 0
0 -1 2 —1

\ 0 0 -1 1)
O—o—60—0
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Undirected Weighted Graphs

e We consider undirected weighted graphs: Each edge e;; is
weighted by w;; > 0.

@ The Laplacian as an operator:

@ As a quadratic form:
FTLE = 5 3 wi(F(w) — F(1y))?

@ L is symmetric and positive semi-definite.

e L has n non-negative, real-valued eigenvalues:
O:AISAQSS)\n 30



o A graph vertex v; is associated with a 3D point v;.

e The weight of an edge ¢;; is defined by the Gaussian kernel:
wij = exp (—[lvi — vj|* /o)

@ 0 < wpin < Wij < Wmax < 1

@ Hence, the geometric structure of the mesh is encoded in the
weights.

@ Other weighting functions were proposed in the literature.
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Point Cloud Laplacians

3-nearest neighbor graph

e-radius graph

KNN may guarantee that

the graph is connected

(depends on the

implementation) ®

e-radius does not O °
guarantee that the graph ° °
has one connected ©

component
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Connected Graph Laplacians

Lu = \u.
L1, =0, \{ =0 is the smallest eigenvalue.
The one vector: 1,, = (1...1)".

0=u'Lu= Zzg':l wij(u(i) — u(j))”.

If any two vertices are connected by a path, then

u = (u(1l),...,u(n)) needs to be constant at all vertices such
that the quadratic form vanishes. Therefore, a graph with one
connected component has the constant vector u; = 1,, as the
only eigenvector with eigenvalue O.
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A Graph with kK Connected Components

Each connected component has an associated Laplacian.
Therefore, we can write matrix L as a block diagonal matrix:

L
L —

L

The spectrum of L is given by the union of the spectra of L;.

Each block corresponds to a connected component, hence
each matrix L; has an eigenvalue 0 with multiplicity 1.

@ The spectrum of L is given by the union of the spectra of L;.

@ The eigenvalue A1 = 0 has multiplicity k.
34



The Eigenspace of A, =0

@ The eigenspace correspondingto Ay = ... = A, =0 s
spanned by the £ mutually orthogonal vectors:

U1 = 1L1

U = ]‘Lk

e with 17, = (0000111110000)" € R"

@ These vectors are the indicator vectors of the graph'’s
connected components.

@ Noticethat 1., +...+1, =1,

35



The Fiedler Vector

The first non-null eigenvalue A\;. ;1 is called the Fiedler value.

The corresponding eigenvector w1 Is called the Fiedler
vector.

The multiplicity of the Fiedler eigenvalue is always equal to 1.

The Fiedler value is the algebraic connectivity of a graph, the
further from 0, the more connected.

The Fidler vector has been extensively used for spectral
bi-partioning

Theoretical results are summarized in Spielman & Teng 2007:
http://cs-www.cs.yale.edu/homes/spielman/

36



Laplacian Eigenvectors for Connected Graphs

U, = Llen = 0.

us Is the the Fiedler vector with multiplicity 1.

The eigenvectors form an orthonormal basis: u

T

i Uj = 0ij.

For any eigenvector u; = (u;(v1) ... u;(v,)) ', 2 <i < n:

uiTln:O

Hence the components of u;, 2 < i < n satisfy:

Z ’U,Z(UJ) =0
7=1

Each component is bounded by:

—1 < ’U,Z'(Uj) <1

A, = algebraic
connectivity,

monotone under graph
inclusion



1-d Laplacian Embedding

Map a weighted graph onto a line such that connected nodes
stay as close as possible, i.e., minimize

ZZ;‘:1 w;j (f(vi) — f(vj))Q, or:

argmfi.nfTLf with: f'f=1and f'1=0

The solution is the eigenvector associated with the smallest
nonzero eigenvalue of the eigenvalue problem: Lf = A\ f,
namely the Fiedler vector us.

For more details on this minimization see Golub & Van Loan
Matrix Computations, chapter 8 (The symmetric eigenvalue
problem).

38



1-d Embedding Example




Higher-d Embeddings

@ Embed the graph in a k-dimensional Euclidean space. The

embedding is given by the n x k matrix F = [f, fo... f]
where the i-th row of this matrix — f(z) — corresponds to the

Euclidean coordinates of the i-th graph node v;.

@ We need to minimize (Belkin & Niyogi '03):

arg min Z winf(i) — £U))1? with: FTF =1.

@ The solution is provided by the matrix of eigenvectors
corresponding to the £ lowest nonzero eigenvalues of the
eigenvalue problem Lf = \f.

40



2-d Embeddings
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Spectral Graph Drawing

Condition for eigenvector Lz = A\x

d—AZfE for all |

A small says x(i) near average of neighbors

Gives :c z

Tutte ‘63: If fix outside face, and let every
other vertex be average of neighbors, get
planar embedding of planar graph.

42



Tutte Embedding

Tutte ‘63 embedding of a graph.

Fix outside face.
Edges -> springs.

Vertex at center
of mass of nbrs.

3-connected -> get planar embedding

43



Spectral Embedding Using
Unnormalized Laplacian

Compute the eigendecomposition L =D — A.
Select the k smallest non-null eigenvalues Ao < ... < A\piq
Akto — A\p11 = eigengap.
We obtain the n x £ matrix U = [uy ... Up11]:
i UQ('Ul) uk+1(?)1) |
U =
u, u; = §;; (orthonormal vectors), hence U' U = I,.

Column i (2 < i < k + 1) of this matrix is a mapping on the
eigenvector u;. 44



More Eigenvectors, More 1-d Embeddings




The Normalized Spectral Embedding of a Graph

@ (Euclidean) L-embedding of a graph:

_1
X:AszT:[ml e Ljoae ZBn]

The coordinates of a vertex v; are:

uk-l-l UJ) )

\ Van



Why the Scaling?

Both

@ the commute-time distance (CTD) and
@ the principal-component analysis of a graph (graph PCA)

are two important concepts; They allow to reason "statistically” on
a graph. They are both associated with the unnormalized

Laplacian matrix.

47



Commute-Time Distance (CTD)

The CTD is a well known quantity in Markov chains;

It is the average number of (weighted) edges that it takes,
starting at vertex v;, to randomly reach vertex v; for the first
time and go back;

The CTD decreases as the number of connections between
the two nodes increases;

It captures the connectivity structure of a small graph volume
rather than a single path between the two vertices — such as
the shortest-path geodesic distance.

The CTD can be computed in closed form:

CTD*(vi,v;) = vol(G)|lx;i — x;]|?

48



Graph PCA

o The mean (remember that > %, u;(v;) = 0):

n
Zj:l u2(vj) 0
1 Z % _ .
- : = :
— n
B Zj:l wp+1(v5) 0
@ The covariance matrix:
T TrTA~3 _ LAl
ij =—XX —A *UTUA, % = -A;
n
@ The vectors us, ..., ur are the directions of maximum

variance of the graph embedding, with )\2_1 > ... 2> )\kil

49



Laplacian Variants

The normalized graph Laplacian (symmetric and semi-definite

positive):

L,=D LD 2=I-D 2AD 2

The transition matrix (allows an analogy with Markov chains):

L;=D"'A
The random-walk graph Laplacian:
L. =D 'L=1-1L
These matrices are similar:

L,=D 2D :LD Dz =D~



Eigenvectors/Eigenvalues for L , L,

o L, w= ) \w <— Lw = \Dw, hence:
Lrt /\120; w; =1

e L,,v = \v. By virtue of the similarity transformation between
the two matrices:

1
L,: AM1=0 vy =Dz21
@ More generally, the two matrices have the same eigenvalues:
0:)\1 S...<>\i...<)\n

@ Their eigenvectors are related by:

1 :
’UZ‘ZDTwi, Vi=1...n



Graph Partitioning

@ The graph-cut problem: Partition the graph such that:

@ Edges between groups have very low weight, and
© Edges within a group have high weight.

1 _
cut(Ar, ..., Ag) = 5 > W(A;, Ay) with W (A, B) =

i=1 i€A,jEB

e Ratio cut: (Hagen & Kahng 1992)

k R
1 W(A
RatioCut(Aq, ... — E
2 1=1 |Az|

e Normalized cut: (Shi & Malik 2000)

1 W (A;, A;
NCut(Ay,..., Ag) := 52 ( . :

— vol(4;)
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Spectral Clustering

@ Both ratio-cut and normalized-cut minimizations are NP-hard
problems

@ Spectral clustering is a way to solve relaxed versions of these
problems:

@ The smallest non-null eigenvectors of the unnormalized
Laplacian approximate the RatioCut minimization criterion,
and

@ The smallest non-null eigenvectors of the random-walk
Laplacian approximate the NCut criterion.

53



Spectral Clustering Using the Random-Walk Laplacian

e For details see (von Luxburg '07)
@ Input: Laplacian L, and the number £ of clusters to compute.

@ Output: Cluster C1,...,C.

@ Compute W formed with the first £ eigenvectors of the
random-walk Laplacian.

@ Determine the spectral embedding Y = W'

© Cluster the columns y,,j =1,...,n into k clusters using the
K-means algorithm.

54



k-Means Clustering

See Bishop'2006 (pages 424—-428) for more details.

@ What is a cluster: a group of points whose inter-point distance
are small compared to distances to points outside the cluster.

@ Cluster centers: q,..., pyg.

@ Goal: find an assignment of points to clusters as well as a set
of vectors ;.

o Notations: For each point y; there is a binary indicator
variable r;; € {0,1}.

@ Objective: minimize the following distorsion measure:

J = szuyj ;|

lel



k-Means Algorithm

Q Initialization: Choose initial values for py, ..., u;.

@ First step: Assign the j-th point to the closest cluster center:

. ) 1 ifi=argmin ly; — mll?
J! 0 otherwise

© Second Step: Minimize J to estimate the cluster centers:

. > =1 TiiY;
D DR T

@ Convergence: Repeat until no more change in the
assignments.
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Spectral Clustering: The Ideal Case

RV |
Cas

0)\12/\2=>\3=O

@ wi,wo, w3 form an
orthonormal basis.

OO = = -0 0
-0 O O O O O

OO O OO = ==

@ The connected components - .
collapse to Y —
(100), (010), (001).

@ Clustering is trivial in this
case.

S O =
S O =
S O =
o = O
o = O
o = O
_0 O
_—0 O
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Spectral Clustering: The Perturbed Case

@ The Laplacian is a perturbed

@@ ’ version of the ideal case.
o @ Choosing the first k nonzero
@ o ° eigenvalues is easier the
@ 0

larger the eigengap between
Mea1 and Agaio.

@ The fact that the first &
eigenvectors of the
perturbed case are
approximately piecewise
constant depends on

@ See (von Luxburg '07) for a
detailed analysis.

@ The connected components
are no longer disconnected,
but they are only connected
by few edges with low

. (Akr2 — At
weight.

@ Choosing £ is a crucial issue.
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Spectral Gap: Selecting k

#®Eigengap: the difference between two consecutive

eigenvalues.

#Most stable clustering is generally given by the value £ that
maximizes the expression

Ak = P\k - 7\%—1‘

max A, =|k2 —7\,1| a\

= Choose k=2

2
[

50

37.5

12.5

Ay

|

1 2 3 4 5 6 7 8 9 10 N 12 13 14 15 16 17 18 19 20
K
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Spirals Again

o & ¢ o o
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Dataset exhibits complex cluster
shapes

= Direct k-means performs very
poorly in this space due to bias
toward dense spherical clusters.
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Mesh Segmentation Using Spectral Clustering
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Spectral Image Segmentation
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Spectral Image Segmentation
(Shi-Malik '00)
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Second Eigenvector
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Second Eigenvector Sparsest Cut
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3rd and 4th Eigenvectors




Conclusion

@ Spectral graph embedding based on the graph Laplacian is a
very powerful tool;

@ Allows links between graphs and Riemannian manifolds
@ There are strong links with Markov chains and random walks

@ It allows clustering (or segmentation) under some conditions
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The End
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