UCSanDiego

Lecture 14/15:

Graph Laplacian

Instructor: Hao Su

Feb 27, 2018

Slides ack: Leo Guidas, Radu Horaud, Dan Spielman http://perception.inrialpes.fr/
http://www.cs.yale.edu/homes/spielman/561/

Agenda

- Some Guidelines for the Final Project
- Graph Laplacian Theory

Agenda

- Some Guidelines for the Final Project
- Graph Laplacian Theory

Topic Selection

- Can be analytical
- Systematically analyze when a published work would fail
- Conclude the causes or provide bounds
- Suggest possible improvements
- Can be Algorithmic
- Propose a new idea based upon existing work
- Or, combine the best of existing approaches
- Or, improve the "state-of-the-art" with solid experiments

Characteristics of a Good Research

- Surprising results/discoveries length contraction, time dilation, mass-energy equivalence, relativistic mass, a universal speed limit and relativity of simultaneity
- Inspiring to others that will breed follow-up work
"theory of special relativity"

Possible Strategies towards Good Research

- Sharp
- Well-defined problem so that everyone understands
- Tactically designed setting so that
- Crisp conclusion is reachable
- But still generalizable to broad cases
- Simple on paper, but sophisticated in mind
- Simple so that extensible
- Need extensive experiments and sufficient reasoning to find the simple setting and solution

How to do Experiments?

- Experiments are the log of conclusions, but not numbers
- Take iterations - from simple to complicated
- Simple enough to build understanding and form solid conclusions
- Make small but solid steps to expand
- Simple means:
- Small data, to allow more iterations
- Synthetic data, so that you can control variables
- e.g. Point Set Generation Network

Scoring Rubric of the Project

- Based upon your presentation and write-up
- Novelty
- problem, approach, discovery
- Intellectual depth
- technical strength
- The key is to show your "commitment" and "understanding" to the problem and results
- Can be incomplete upon deadline
- As long as you can insightfully explain the motivation, idea, approach, and progress

Schedule for Final Presentation

- Time: March 20, 2018, 3:00pm to 7:00pm
- If you have any conflict with the schedule, let me know in advance no later than March 15
- Form: TBD
- Presentation only (~15 min for each team)
- Or spotlight presentation (~5 min) + poster session
- Three best papers will be generated

Agenda

- Some Guidelines for the Final Project
- Graph Laplacian Theory

The Graph View of Data

Social Networks

Connect Points in R^{d} and Graph Views of Data

- Points in R^{d}
- via near-neighbor graphs
- Graph
- via matrix representations of graphs

Spectral Graph Theory

- The spectral graph theory studies the properties of graphs via the eigenvalues and eigenvectors of their associated graph matrices: the adjacency matrix and the graph Laplacian and its variants.
- Both matrices have been extremely well studied from an algebraic point of view.
- The Laplacian allows a natural link between discrete representations, such as graphs, and continuous representations, such as vector spaces and manifolds.
- The most important application of the Laplacian is spectral clustering that corresponds to a computationally tractable solution to the graph partitionning problem.
- Another application is spectral matching that solves for graph matching.

More Applications

- Spectral partitioning: automatic circuit placement for VLSI (Alpert et al 1999), image segmentation (Shi \& Malik 2000),
- Text mining and web applications: document classification based on semantic association of words (Lafon \& Lee 2006), collaborative recommendation (Fouss et al. 2007), text categorization based on reader similarity (Kamvar et al. 2003).
- Manifold analysis: Manifold embedding, manifold learning, mesh segmentation, etc.

Graph Notations and Definitions

We consider simple graphs (no multiple edges or loops), $\mathcal{G}=\{\mathcal{V}, \mathcal{E}\}:$

- $\mathcal{V}(\mathcal{G})=\left\{v_{1}, \ldots, v_{n}\right\}$ is called the vertex set with $n=|\mathcal{V}|$;
- $\mathcal{E}(\mathcal{G})=\left\{e_{i j}\right\}$ is called the edge set with $m=|\mathcal{E}|$;
- An edge $e_{i j}$ connects vertices v_{i} and v_{j} if they are adjacent or neighbors. One possible notation for adjacency is $v_{i} \sim v_{j}$;
- The number of neighbors of a node v is called the degree of v and is denoted by $d(v), d\left(v_{i}\right)=\sum_{v_{i} \sim v_{j}} e_{i j}$. If all the nodes of a graph have the same degree, the graph is regular; The nodes of an Eulerian graph have even degree.
- A graph is complete if there is an edge between every pair of vertices.

Subgraphs

- \mathcal{H} is a subgraph of \mathcal{G} if $\mathcal{V}(\mathcal{H}) \subseteq \mathcal{V}(\mathcal{G})$ and $\mathcal{E}(\mathcal{H}) \subseteq \mathcal{E}(\mathcal{G})$;
- a subgraph \mathcal{H} is an induced subgraph of \mathcal{G} if two vertices of $\mathcal{V}(\mathcal{H})$ are adjacent if and only if they are adjacent in \mathcal{G}.
- A clique is a complete subgraph of a graph.
- A path of k vertices is a sequence of k distinct vertices such that consecutive vertices are adjacent.
- A cycle is a connected subgraph where every vertex has exactly two neighbors.
- A graph containing no cycles is a forest. A connected forest is a tree.

k-Partite Graphs

- A graph is called k-partite if its set of vertices admits a partition into k classes such that the vertices of the same class are not adjacent.
- An example of a bipartite graph.

Adjacency Matrices

- For a graph with n vertices, the entries of the $n \times n$ adjacency matrix are defined by:

$$
\begin{gathered}
\mathbf{A}:=\left\{\begin{array}{ll}
A_{i j}=1 & \text { if there is an edge } e_{i j} \\
A_{i j}=0 & \text { if there is no edge } \\
A_{i i}=0 & \\
\mathbf{A}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
\end{array} \begin{array}{l}
v_{4}
\end{array}\right.
\end{gathered}
$$

Weighted Matrices

- Adjacency matrix (A)
- $n \times n$ matrix
- $A=\left[w_{i j} \cdot\right]$ edge weight between vertex x_{i} and x_{j}

	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\mathbf{4}}$	$\boldsymbol{x}_{\mathbf{5}}$	$\boldsymbol{x}_{\mathbf{6}}$
$\boldsymbol{x}_{\mathbf{1}}$	0	0.8	0.6	0	0.1	0
$\boldsymbol{x}_{\mathbf{2}}$	0.8	0	0.8	0	0	0
$\boldsymbol{x}_{\mathbf{3}}$	0.6	0.8	0	0.2	0	0
$\boldsymbol{x}_{\mathbf{4}}$	0	0	0.2	0	0.8	0.7
$\boldsymbol{x}_{\mathbf{5}}$	0.1	0	0	0.8	0	0.8
$\boldsymbol{x}_{\mathbf{6}}$	0	0	0	0.7	0.8	0

- Important properties:
- Symmetric matrix
\Rightarrow Eigenvalues are real
\Rightarrow Eigenvector could span orthogonal base

Eigenvalues and Eigenvectors

- A is a real-symmetric matrix: it has n real eigenvalues and its n real eigenvectors form an orthonormal basis.
- Let $\left\{\lambda_{1}, \ldots, \lambda_{i}, \ldots, \lambda_{r}\right\}$ be the set of distinct eigenvalues.
- The eigenspace S_{i} contains the eigenvectors associated with λ_{i} :

$$
S_{i}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \mathbf{A} \boldsymbol{x}=\lambda_{i} \boldsymbol{x}\right\}
$$

- For real-symmetric matrices, the algebraic multiplicity is equal to the geometric multiplicity, for all the eigenvalues.
- The dimension of S_{i} (geometric multiplicity) is equal to the multiplicity of λ_{i}.
- If $\lambda_{i} \neq \lambda_{j}$ then S_{i} and S_{j} are mutually orthogonal.

Functions on Graphs

- We consider real-valued functions on the set of the graph's vertices, $\boldsymbol{f}: \mathcal{V} \longrightarrow \mathbb{R}$. Such a function assigns a real number to each graph node.
- \boldsymbol{f} is a vector indexed by the graph's vertices, hence $\boldsymbol{f} \in \mathbb{R}^{n}$.
- Notation: $\boldsymbol{f}=\left(f\left(v_{1}\right), \ldots, f\left(v_{n}\right)\right)=(f(1), \ldots, f(n))$.
- The eigenvectors of the adjacency matrix, $\mathbf{A} \boldsymbol{x}=\lambda \boldsymbol{x}$, can be viewed as eigenfunctions.

Operators and Quadratic Forms

- The adjacency matrix can be viewed as an operator

$$
\boldsymbol{g}=\mathbf{A} \boldsymbol{f} ; g(i)=\sum_{i \sim j} f(j)
$$

- It can also be viewed as a quadratic form:

$$
\boldsymbol{f}^{\top} \mathbf{A} \boldsymbol{f}=\sum_{e_{i j}} f(i) f(j)
$$

Incidence Matrix

- Let each edge in the graph have an arbitrary but fixed orientation;
- The incidence matrix of a graph is a $|\mathcal{E}| \times|\mathcal{V}|(m \times n)$ matrix defined as follows:

$$
\begin{gathered}
\nabla:= \begin{cases}\nabla e v=-1 & \text { if } v \text { is the initial vertex of edge } e \\
\nabla e v=1 & \text { if } v \text { is the terminal vertex of edge } e \\
\nabla e v=0 & \text { if } v \text { is not in } e\end{cases} \\
\nabla=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & +1
\end{array}\right]
\end{gathered}
$$

Discrete Differential Operator

- The mapping $\boldsymbol{f} \longrightarrow \nabla \boldsymbol{f}$ is known as the co-boundary mapping of the graph.
- $(\nabla \boldsymbol{f})\left(e_{i j}\right)=f\left(v_{j}\right)-f\left(v_{i}\right)$

$$
\left(\begin{array}{l}
f(2)-f(1) \\
f(1)-f(3) \\
f(3)-f(2) \\
f(4)-f(2)
\end{array}\right)=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & +1
\end{array}\right]\left(\begin{array}{c}
f(1) \\
f(2) \\
f(3) \\
f(4)
\end{array}\right)
$$

Graph (Unnormalized) Laplacian

- $\mathbf{L}=\nabla^{\top} \nabla$
- $(\mathbf{L} \boldsymbol{f})\left(v_{i}\right)=\sum_{v_{j} \sim v_{i}}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right)$
- Connection between the Laplacian and the adjacency matrices:

$$
\mathbf{L}=\mathbf{D}-\mathbf{A}
$$

- The degree matrix: $\mathbf{D}:=D_{i i}=d\left(v_{i}\right)$.

$$
\mathbf{L}=\left[\begin{array}{cccc}
2 & -1 & -1 & 0 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

Degree Matrix

- Degree matrix (D)
- $n x n$ diagonal matrix
- $D(i, i)=\sum_{j} w_{i j}$: total weight of edges incident to vertex x_{i}

- Important application:
- Normalize adjacency matrix

Laplacian Matrix

- Laplacian matrix (L)
- $n x n$ symmetric matrix

$$
L=D-A
$$

	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\mathbf{4}}$	$\boldsymbol{x}_{\mathbf{5}}$	$\boldsymbol{x}_{\mathbf{6}}$
$\boldsymbol{x}_{\mathbf{1}}$	1.5	-0.8	-0.6	0	-0.1	0
$\boldsymbol{x}_{\mathbf{2}}$	-0.8	1.6	-0.8	0	0	0
$\boldsymbol{x}_{\mathbf{3}}$	-0.6	-0.8	1.6	-0.2	0	0
$\boldsymbol{x}_{\mathbf{4}}$	0	0	-0.2	1.7	-0.8	-0.7
$\boldsymbol{x}_{\mathbf{5}}$	-0.1	0	0	0.8	1.7	-0.8
$\boldsymbol{x}_{\mathbf{6}}$	0	0	0	-0.7	-0.8	1.5

- Important properties:

- Eigenvectors are real and orthogonal
- Eigenvalues and eigenvectors provide an insight into the connectivity of the graph...

Laplacian Defines Natural Quadratic Form of Graphs

$$
x^{T} L x=\sum(x(i)-x(j))^{2}
$$

$$
(i, j) \in E
$$

$L=D-A \quad$ where D is diagonal matrix of degrees

$$
\left(\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

Undirected Weighted Graphs

- We consider undirected weighted graphs: Each edge $e_{i j}$ is weighted by $w_{i j}>0$.
- The Laplacian as an operator:

$$
(\mathbf{L} \boldsymbol{f})\left(v_{i}\right)=\sum_{v_{j} \sim v_{i}} w_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right)
$$

- As a quadratic form:

$$
\boldsymbol{f}^{\top} \mathbf{L} \boldsymbol{f}=\frac{1}{2} \sum_{e_{i j}} w_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right)^{2}
$$

- \mathbf{L} is symmetric and positive semi-definite.
- L has n non-negative, real-valued eigenvalues:

$$
0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n} .
$$

Discrete Surface Laplacians: 3D Meshes

- A graph vertex v_{i} is associated with a 3D point \boldsymbol{v}_{i}.
- The weight of an edge $e_{i j}$ is defined by the Gaussian kernel:

$$
w_{i j}=\exp \left(-\left\|\boldsymbol{v}_{i}-\boldsymbol{v}_{j}\right\|^{2} / \sigma^{2}\right)
$$

- $0 \leq w_{\text {min }} \leq w_{i j} \leq w_{\text {max }} \leq 1$
- Hence, the geometric structure of the mesh is encoded in the weights.
- Other weighting functions were proposed in the literature.

Point Cloud Laplacians

- 3-nearest neighbor graph
- ε-radius graph
- KNN may guarantee that the graph is connected (depends on the implementation)
- ε-radius does not guarantee that the graph has one connected component

Connected Graph Laplacians

- $\mathbf{L} \boldsymbol{u}=\lambda \boldsymbol{u}$.
- $\mathbf{L} \mathbf{1}_{n}=\mathbf{0}, \lambda_{1}=0$ is the smallest eigenvalue.
- The one vector: $\mathbf{1}_{n}=(1 \ldots 1)^{\top}$.
- $0=\boldsymbol{u}^{\top} \mathbf{L} \boldsymbol{u}=\sum_{i, j=1}^{n} w_{i j}(u(i)-u(j))^{2}$.
- If any two vertices are connected by a path, then
$\boldsymbol{u}=(u(1), \ldots, u(n))$ needs to be constant at all vertices such that the quadratic form vanishes. Therefore, a graph with one connected component has the constant vector $\boldsymbol{u}_{1}=\mathbf{1}_{n}$ as the only eigenvector with eigenvalue 0 .

A Graph with k Connected Components

- Each connected component has an associated Laplacian. Therefore, we can write matrix \mathbf{L} as a block diagonal matrix:

$$
\mathbf{L}=\left[\begin{array}{lll}
\mathbf{L}_{1} & & \\
& \ddots & \\
& & \mathbf{L}_{k}
\end{array}\right]
$$

- The spectrum of \mathbf{L} is given by the union of the spectra of \mathbf{L}_{i}.
- Each block corresponds to a connected component, hence each matrix \mathbf{L}_{i} has an eigenvalue 0 with multiplicity 1.
- The spectrum of \mathbf{L} is given by the union of the spectra of \mathbf{L}_{i}.
- The eigenvalue $\lambda_{1}=0$ has multiplicity k.

The Eigenspace of $\lambda_{1}=0$

- The eigenspace corresponding to $\lambda_{1}=\ldots=\lambda_{k}=0$ is spanned by the k mutually orthogonal vectors:

$$
\begin{gathered}
\boldsymbol{u}_{1}=\mathbf{1}_{L_{1}} \\
\\
\ldots \\
\boldsymbol{u}_{k}=\mathbf{1}_{L_{k}}
\end{gathered}
$$

- with $\mathbf{1}_{L_{i}}=(0000111110000)^{\top} \in \mathbb{R}^{n}$
- These vectors are the indicator vectors of the graph's connected components.
- Notice that $\mathbf{1}_{L_{1}}+\ldots+\mathbf{1}_{L_{k}}=\mathbf{1}_{n}$

The Fiedler Vector

- The first non-null eigenvalue λ_{k+1} is called the Fiedler value.
- The corresponding eigenvector \boldsymbol{u}_{k+1} is called the Fiedler vector.
- The multiplicity of the Fiedler eigenvalue is always equal to 1 .
- The Fiedler value is the algebraic connectivity of a graph, the further from 0 , the more connected.
- The Fidler vector has been extensively used for spectral bi-partioning
- Theoretical results are summarized in Spielman \& Teng 2007: http://cs-www.cs.yale.edu/homes/spielman/

Laplacian Eigenvectors for Connected Graphs

- $\boldsymbol{u}_{1}=\mathbf{1}_{n}, \mathbf{L} \mathbf{1}_{n}=\mathbf{0}$.
- \boldsymbol{u}_{2} is the the Fiedler vector with multiplicity 1.
- The eigenvectors form an orthonormal basis: $\boldsymbol{u}_{i}^{\top} \boldsymbol{u}_{j}=\delta_{i j}$.
- For any eigenvector $\boldsymbol{u}_{i}=\left(\boldsymbol{u}_{i}\left(v_{1}\right) \ldots \boldsymbol{u}_{i}\left(v_{n}\right)\right)^{\top}, 2 \leq i \leq n$:

$$
\boldsymbol{u}_{i}^{\top} \mathbf{1}_{n}=0
$$

- Hence the components of $\boldsymbol{u}_{i}, 2 \leq i \leq n$ satisfy:

$$
\sum_{j=1}^{n} \boldsymbol{u}_{i}\left(v_{j}\right)=0
$$

- Each component is bounded by:
$\lambda_{2}=$ algebraic connectivity, monotone under graph inclusion

$$
-1<\boldsymbol{u}_{i}\left(v_{j}\right)<1
$$

1-d Laplacian Embedding

- Map a weighted graph onto a line such that connected nodes stay as close as possible, i.e., minimize $\sum_{i, j=1}^{n} w_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right)^{2}$, or:

$$
\arg \min _{\boldsymbol{f}} \boldsymbol{f}^{\top} \mathbf{L} \boldsymbol{f} \text { with: } \boldsymbol{f}^{\top} \boldsymbol{f}=1 \text { and } \boldsymbol{f}^{\top} \mathbf{1}=0
$$

- The solution is the eigenvector associated with the smallest nonzero eigenvalue of the eigenvalue problem: $\mathbf{L} f=\lambda f$, namely the Fiedler vector \boldsymbol{u}_{2}.
- For more details on this minimization see Golub \& Van Loan Matrix Computations, chapter 8 (The symmetric eigenvalue problem).

1-d Embedding Example

Higher-d Embeddings

- Embed the graph in a k-dimensional Euclidean space. The embedding is given by the $n \times k$ matrix $\mathbf{F}=\left[\boldsymbol{f}_{1} \boldsymbol{f}_{2} \ldots \boldsymbol{f}_{k}\right]$ where the i-th row of this matrix - $\boldsymbol{f}^{(i)}$ - corresponds to the Euclidean coordinates of the i-th graph node v_{i}.
- We need to minimize (Belkin \& Niyogi '03):

$$
\arg \min _{\boldsymbol{f}_{1} \ldots \boldsymbol{f}_{k}} \sum_{i, j=1}^{n} w_{i j}\left\|\boldsymbol{f}^{(i)}-\boldsymbol{f}^{(j)}\right\|^{2} \text { with: } \mathbf{F}^{\top} \mathbf{F}=\mathbf{I} .
$$

- The solution is provided by the matrix of eigenvectors corresponding to the k lowest nonzero eigenvalues of the eigenvalue problem $\mathbf{L} \boldsymbol{f}=\lambda \boldsymbol{f}$.

2-d Embeddings

Spectral Graph Drawing

Condition for eigenvector $L x=\lambda x$
Gives $x(i)=\frac{1}{d_{i}-\lambda} \sum_{j \sim i} x(j) \quad$ for all i
λ small says $x(i)$ near average of neighbors

Tutte '63: If fix outside face, and let every other vertex be average of neighbors, get planar embedding of planar graph.

Tutte Embedding

Tutte '63 embedding of a graph.

Fix outside face. Edges -> springs.

Vertex at center of mass of nbrs.

3-connected -> get planar embedding

Spectral Embedding Using Unnormalized Laplacian

- Compute the eigendecomposition $\mathbf{L}=\mathbf{D}-\mathbf{A}$.
- Select the k smallest non-null eigenvalues $\lambda_{2} \leq \ldots \leq \lambda_{k+1}$
- $\lambda_{k+2}-\lambda_{k+1}=$ eigengap.
- We obtain the $n \times k$ matrix $\mathbf{U}=\left[\boldsymbol{u}_{2} \ldots \boldsymbol{u}_{k+1}\right]$:

$$
\mathbf{U}=\left[\begin{array}{ccc}
\boldsymbol{u}_{2}\left(v_{1}\right) & \ldots & \boldsymbol{u}_{k+1}\left(v_{1}\right) \\
\vdots & & \vdots \\
\boldsymbol{u}_{2}\left(v_{n}\right) & \ldots & \boldsymbol{u}_{k+1}\left(v_{n}\right)
\end{array}\right]
$$

- $\boldsymbol{u}_{i}^{\top} \boldsymbol{u}_{j}=\delta_{i j}$ (orthonormal vectors), hence $\mathbf{U}^{\top} \mathbf{U}=\mathbf{I}_{k}$.
- Column $i(2 \leq i \leq k+1)$ of this matrix is a mapping on the eigenvector \boldsymbol{u}_{i}.

More Eigenvectors, More 1-d Embeddings

The Normalized Spectral Embedding of a Graph

- (Euclidean) L-embedding of a graph:

$$
\mathbf{X}=\boldsymbol{\Lambda}_{k}^{-\frac{1}{2}} \mathbf{U}^{\top}=\left[\begin{array}{lllll}
\boldsymbol{x}_{1} & \ldots & \boldsymbol{x}_{j} & \ldots & \boldsymbol{x}_{n}
\end{array}\right]
$$

The coordinates of a vertex v_{j} are:

$$
\boldsymbol{x}_{j}=\left(\begin{array}{c}
\frac{\boldsymbol{u}_{2}\left(v_{j}\right)}{\sqrt{\lambda_{2}}} \\
\vdots \\
\frac{\boldsymbol{u}_{k+1}\left(v_{j}\right)}{\sqrt{\lambda_{k+1}}}
\end{array}\right)
$$

Why the Scaling?

Both

- the commute-time distance (CTD) and
- the principal-component analysis of a graph (graph PCA)
are two important concepts; They allow to reason "statistically" on a graph. They are both associated with the unnormalized Laplacian matrix.

Commute-Time Distance (CTD)

- The CTD is a well known quantity in Markov chains;
- It is the average number of (weighted) edges that it takes, starting at vertex v_{i}, to randomly reach vertex v_{j} for the first time and go back;
- The CTD decreases as the number of connections between the two nodes increases;
- It captures the connectivity structure of a small graph volume rather than a single path between the two vertices - such as the shortest-path geodesic distance.
- The CTD can be computed in closed form:

$$
\operatorname{CTD}^{2}\left(v_{i}, v_{j}\right)=\operatorname{vol}(\mathcal{G})\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}
$$

Graph PCA

- The mean (remember that $\sum_{j=1}^{n} \boldsymbol{u}_{i}\left(v_{j}\right)=0$):

$$
\overline{\boldsymbol{x}}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{j}=\boldsymbol{\Lambda}_{k}^{-\frac{1}{2}}\left(\begin{array}{c}
\sum_{j=1}^{n} \boldsymbol{u}_{2}\left(v_{j}\right) \\
\vdots \\
\sum_{j=1}^{n} \boldsymbol{u}_{k+1}\left(v_{j}\right)
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

- The covariance matrix:

$$
\mathbf{S}=\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{x}_{j} \boldsymbol{x}_{j}^{\top}=\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}=\frac{1}{n} \boldsymbol{\Lambda}_{k}^{-\frac{1}{2}} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Lambda}_{k}^{-\frac{1}{2}}=\frac{1}{n} \boldsymbol{\Lambda}_{k}^{-1}
$$

- The vectors $\boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k+1}$ are the directions of maximum variance of the graph embedding, with $\lambda_{2}^{-1} \geq \ldots \geq \lambda_{k+1}^{-1}$.

Laplacian Variants

- The normalized graph Laplacian (symmetric and semi-definite positive):

$$
\mathbf{L}_{n}=\mathbf{D}^{-\frac{1}{2}} \mathbf{L} \mathbf{D}^{-\frac{1}{2}}=\mathbf{I}-\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}
$$

- The transition matrix (allows an analogy with Markov chains):

$$
\mathbf{L}_{t}=\mathbf{D}^{-1} \mathbf{A}
$$

- The random-walk graph Laplacian:

$$
\mathbf{L}_{r}=\mathbf{D}^{-1} \mathbf{L}=\mathbf{I}-\mathbf{L}_{t}
$$

- These matrices are similar:

$$
\mathbf{L}_{r}=\mathbf{D}^{-\frac{1}{2}} \mathbf{D}^{-\frac{1}{2}} \mathbf{L} \mathbf{D}^{-\frac{1}{2}} \mathbf{D}^{\frac{1}{2}}=\mathbf{D}^{-\frac{1}{2}} \mathbf{L}_{n} \mathbf{D}^{\frac{1}{2}}
$$

Eigenvectors/Eigenvalues for L_{n}, L_{r}

- $\mathbf{L}_{r} \boldsymbol{w}=\lambda \boldsymbol{w} \Longleftrightarrow \mathbf{L} \boldsymbol{w}=\lambda \mathbf{D} \boldsymbol{w}$, hence:

$$
\mathbf{L}_{r}: \quad \lambda_{1}=0 ; \quad \boldsymbol{w}_{1}=\mathbf{1}
$$

- $\mathbf{L}_{n} \boldsymbol{v}=\lambda \boldsymbol{v}$. By virtue of the similarity transformation between the two matrices:

$$
\mathbf{L}_{n}: \quad \lambda_{1}=0 \quad \boldsymbol{v}_{1}=\mathbf{D}^{\frac{1}{2}} \mathbf{1}
$$

- More generally, the two matrices have the same eigenvalues:

$$
0=\lambda_{1} \leq \ldots \leq \lambda_{i} \ldots \leq \lambda_{n}
$$

- Their eigenvectors are related by:

$$
\boldsymbol{v}_{i}=\mathbf{D}^{\frac{1}{2}} \boldsymbol{w}_{i}, \forall i=1 \ldots n
$$

Graph Partitioning

- The graph-cut problem: Partition the graph such that:
(1) Edges between groups have very low weight, and
(2) Edges within a group have high weight.

$$
\operatorname{cut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} W\left(A_{i}, \bar{A}_{i}\right) \text { with } W(A, B)=\sum_{i \in A, j \in B} w_{i j}
$$

- Ratio cut: (Hagen \& Kahng 1992)

$$
\text { RatioCut }\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}
$$

- Normalized cut: (Shi \& Malik 2000)

$$
\operatorname{NCut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\operatorname{vol}\left(A_{i}\right)}
$$

Spectral Clustering

- Both ratio-cut and normalized-cut minimizations are NP-hard problems
- Spectral clustering is a way to solve relaxed versions of these problems:
(1) The smallest non-null eigenvectors of the unnormalized Laplacian approximate the RatioCut minimization criterion, and
(2) The smallest non-null eigenvectors of the random-walk Laplacian approximate the NCut criterion.

Spectral Clustering Using the Random-Walk Laplacian

- For details see (von Luxburg '07)
- Input: Laplacian \mathbf{L}_{r} and the number k of clusters to compute.
- Output: Cluster C_{1}, \ldots, C_{k}.
(1) Compute \mathbf{W} formed with the first k eigenvectors of the random-walk Laplacian.
(2) Determine the spectral embedding $\mathbf{Y}=\mathbf{W}^{\top}$
(Cluster the columns $\boldsymbol{y}_{j}, j=1, \ldots, n$ into k clusters using the K-means algorithm.

k-Means Clustering

See Bishop'2006 (pages 424-428) for more details.

- What is a cluster: a group of points whose inter-point distance are small compared to distances to points outside the cluster.
- Cluster centers: $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}$.
- Goal: find an assignment of points to clusters as well as a set of vectors μ_{i}.
- Notations: For each point \boldsymbol{y}_{j} there is a binary indicator variable $r_{j i} \in\{0,1\}$.
- Objective: minimize the following distorsion measure:

$$
J=\sum_{j=1}^{n} \sum_{i=1}^{k} r_{j 5}\left\|\boldsymbol{y}_{j}-\boldsymbol{\mu}_{i}\right\|^{2}
$$

k-Means Algorithm

(1) Initialization: Choose initial values for $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}$.
(2) First step: Assign the j-th point to the closest cluster center:

$$
r_{j i}= \begin{cases}1 & \text { if } i=\arg \min _{l}\left\|\boldsymbol{y}_{j}-\mu_{l}\right\|^{2} \\ 0 & \text { otherwise }\end{cases}
$$

(3) Second Step: Minimize J to estimate the cluster centers:

$$
\boldsymbol{\mu}_{i}=\frac{\sum_{j=1}^{n} r_{j i} \boldsymbol{y}_{j}}{\sum_{j=1}^{n} r_{j i}}
$$

(Convergence: Repeat until no more change in the assignments.

Spectral Clustering: The Ideal Case

- $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$
- $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}$ form an orthonormal basis.
- The connected components collapse to (100), (010), (001).
- Clustering is trivial in this case.

Spectral Clustering: The Perturbed Case

- See (von Luxburg '07) for a detailed analysis.
- The connected components are no longer disconnected, but they are only connected by few edges with low weight.
- The Laplacian is a perturbed version of the ideal case.
- Choosing the first k nonzero eigenvalues is easier the larger the eigengap between λ_{k+1} and λ_{k+2}.
- The fact that the first k eigenvectors of the perturbed case are approximately piecewise constant depends on $\left|\lambda_{k+2}-\lambda_{k+1}\right|$.
- Choosing k is a crucial issue.

Spectral Gap: Selecting k

-Eigengap: the difference between two consecutive eigenvalues.
-Most stable clustering is generally given by the value k that maximizes the expression

Spirals Again

Mesh Segmentation Using Spectral Clustering

$K=6$

$K=6$

$K=9$

$K=6$

Spectral Image Segmentation

Spectral Image Segmentation (Shi-Malik '00)

Spectral Image Segmentation (Shi-Malik '00)

Second Eigenvector

Second Eigenvector Sparsest Cut

$3^{\text {rd }}$ and $4^{\text {th }}$ Eigenvectors

Conclusion

- Spectral graph embedding based on the graph Laplacian is a very powerful tool;
- Allows links between graphs and Riemannian manifolds
- There are strong links with Markov chains and random walks
- It allows clustering (or segmentation) under some conditions

The End

