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• Some Guidelines for the Final Project

• Graph Laplacian Theory
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Topic Selection
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• Can be analytical
• Systematically analyze when a published work 

would fail
• Conclude the causes or provide bounds
• Suggest possible improvements

• Can be Algorithmic
• Propose a new idea based upon existing work
• Or, combine the best of existing approaches
• Or, improve the “state-of-the-art” with solid 

experiments
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Characteristics of a Good Research
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• Surprising results/discoveries
length contraction, time dilation, mass–energy 
equivalence, relativistic mass, a universal 
speed limit and relativity of simultaneity 

• Inspiring to others that will 
breed follow-up work

“theory of special relativity"
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Possible Strategies towards Good Research
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• Sharp
• Well-defined problem so that everyone understands
• Tactically designed setting so that

• Crisp conclusion is reachable
• But still generalizable to broad cases

• Simple on paper, but sophisticated in mind
• Simple so that extensible
• Need extensive experiments and sufficient 

reasoning to find the simple setting and solution
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How to do Experiments?
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• Experiments are the log of conclusions, but not 
numbers

• Take iterations — from simple to complicated
• Simple enough to build understanding and form 

solid conclusions
• Make small but solid steps to expand

• Simple means:
• Small data, to allow more iterations
• Synthetic data, so that you can control variables
• e.g. Point Set Generation Network
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Scoring Rubric of the Project
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• Based upon your presentation and write-up
• Novelty 

• problem, approach, discovery
• Intellectual depth

• technical strength
• The key is to show your “commitment” and 

“understanding” to the problem and results
• Can be incomplete upon deadline 
• As long as you can insightfully explain the 

motivation, idea, approach, and progress
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Schedule for Final Presentation
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• Time: March 20, 2018, 3:00pm to 7:00pm
• If you have any conflict with the schedule, let me 

know in advance no later than March 15
• Form: TBD

• Presentation only (~15 min for each team)
• Or spotlight presentation (~5 min) + poster session

• Three best papers will be generated
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Agenda

    Hao Su                                                 Lecture      -14 10

• Some Guidelines for the Final Project

• Graph Laplacian Theory



The Graph View of Data

11



Social Networks
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• Graph 
• via matrix representations 

of graphs

Connect Points in Rd and Graph Views of Data

• Points in Rd  
• via near-neighbor graphs
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Spectral Graph Theory
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More Applications
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Graph Notations and Definitions

16



Subgraphs
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k-Partite Graphs
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Adjacency Matrices
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• Adjacency matrix (A) 
• n x n matrix 
•               : edge weight between vertex xi and xj

x1 x2 x3 x4 x5 x6

x1 0 0.8 0.6 0 0.1 0

x2 0.8 0 0.8 0 0 0

x3 0.6 0.8 0 0.2 0 0

x4 0 0 0.2 0 0.8 0.7

x5 0.1 0 0 0.8 0 0.8

x6 0 0 0 0.7 0.8 0

• Important properties:  
– Symmetric matrix 
⇒ Eigenvalues are real  
⇒ Eigenvector could span orthogonal base
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Order the eigenvalues from small to large

Eigenvalues and Eigenvectors



Functions on Graphs
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Operators and Quadratic Forms
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Incidence Matrix
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Discrete Differential Operator
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Graph (Unnormalized) Laplacian
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• Important application: 
– Normalize adjacency matrix

• Degree matrix (D) 
• n x n  diagonal matrix 

•                    : total weight of edges incident to vertex xi

x1 x2 x3 x4 x5 x6

x1 1.5 0 0 0 0 0

x2 0 1.6 0 0 0 0

x3 0 0 1.6 0 0 0

x4 0 0 0 1.7 0 0

x5 0 0 0 0 1.7 0

x6 0 0 0 0 0 1.5
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• Laplacian matrix (L) 
• n x n symmetric matrix

• Important properties: 
– Eigenvalues are non-negative real numbers (Gershgorin circle theorem) 
– Eigenvectors are real and orthogonal 
– Eigenvalues and eigenvectors provide an insight into 

the connectivity of the graph…

L = D - A
x1 x2 x3 x4 x5 x6

x1 1.5 -0.8 -0.6 0 -0.1 0

x2 -0.8 1.6 -0.8 0 0 0

x3 -0.6 -0.8 1.6 -0.2 0 0

x4 0 0 -0.2 1.7 -0.8 -0.7

x5 -0.1 0 0 0.8- 1.7 -0.8

x6 0 0 0 -0.7 -0.8 1.5
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Laplacian Defines Natural Quadratic Form of Graphs
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Undirected Weighted Graphs
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Discrete Surface Laplacians: 3D Meshes
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Point Cloud Laplacians

32



Connected Graph Laplacians
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A Graph with k Connected Components
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The Eigenspace of λ1 = 0
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The Fiedler Vector
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λ2 = algebraic 
connectivity, 
monotone under graph 
inclusion

Laplacian Eigenvectors for Connected Graphs



1-d Laplacian Embedding
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1-d Embedding Example
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Higher-d Embeddings
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2-d Embeddings
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Spectral Graph Drawing
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Tutte Embedding
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Spectral Embedding Using 
Unnormalized Laplacian
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More Eigenvectors, More 1-d Embeddings
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The Normalized Spectral Embedding of a Graph
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Why the Scaling?
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Commute-Time Distance (CTD)
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Graph PCA
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Laplacian Variants



Eigenvectors/Eigenvalues for Ln, Lr



Graph Partitioning
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Spectral Clustering
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Spectral Clustering Using the Random-Walk Laplacian
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k-Means Clustering
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k-Means Algorithm
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Spectral Clustering: The Ideal Case
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Spectral Clustering: The Perturbed Case
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Eigengap: the difference between two consecutive 
eigenvalues. 
Most stable clustering is generally given by the value k that 
maximizes the expression

1k k kλ λ −Δ = −

⇒ Choose k=2

2 1max k λ λΔ = −

Spectral Gap: Selecting k
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⇒ Direct k-means performs very 
poorly in this space due to bias 
toward dense spherical clusters.
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Spirals Again



Mesh Segmentation Using Spectral Clustering
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Spectral Image Segmentation

62



Spectral Image Segmentation 
(Shi-Malik ’00)
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Spectral Image Segmentation 
(Shi-Malik ’00)
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Second Eigenvector
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Second Eigenvector Sparsest Cut
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3rd and 4th Eigenvectors
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Conclusion
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The End
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