Generative Adversarial Networks (GANSs)

The coolest idea in Machine Learning in the last twenty years - Yann Lecun
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o Generative Adversarial Networks (GANs)
e 3D GANs

@ Domain Adaptation
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Introduction

From David silver, Reinforcement learning (UCL course on RL, 2015).
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Supervised Learning

e Find deterministic function f: y = f(x), x:data, y:label
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Unsupervised Learning

"Most of human and animal learning is unsupervised learning. If
intelligence was a cake, unsupervised learning would be the cake, supervised
learning would be the icing on the cake, and reinforcement learning would
be the cherry on the cake. We know how to make the icing and the cherry,
but we do not know how to make the cake. We need to solve the
unsupervised learning problem before we can even think of getting to true
AL" - Yann Lecun

"You cannot predict what you cannot understand" - Anonymous
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Unsupervised Learning

@ More challenging than supervised learning. No label or curriculum.
@ Some NN solutions:

e Boltzmann machine
o AutoEncoder
o Generative Adversarial Networks

[0.1,0.3,-0.8,04,...] — g
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Unsupervised Learning vs Generative Model

e z =f(x) vs. x =g(z)
e P(z|x) vs P(x|2)
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Autoencoders

Stacked Autoencoders

o Use data itself as label

| upervised learning

with L2 loss ( = MSE )
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Autoencoders

Denosing Autoencoders

upervised learning

with L2 loss ( = MSE )
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Variational Autoencoder
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Generative Adversarial Networks

o lan Goodfellow et al, "Generative Adversarial Networks", 2014.
@ Mini-Max game based on Nash Equilibrium

@ Hard to train. No guaranteed equilibrium
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Generative Adversarial Networks

— Discriminator training
— Generator training

fake image
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Generative Adversarial Networks

Value of Expectation prob. of D(real) prob. of D(fake)

|

min max V(D~ G) . ]ECENPdm;\(I)[lOg D((l})] g5 ]Ez'vpx(z) [lOg(l - D(G(Z)))]

“ A r 1 \

— . X is sampled z is sampled
Minimize G Maximize D from real data from N(0, 1) fake
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Generative Adversarial Networks
Result




Generative Adversarial Networks

DCGAN

@ DCGAN used the following tricks:

o Use LeakyRelu instead of RELU
e Use Batchnorm in both generator and discriminator
o Adam optimizer (Ir = 0.0002, betal = 0.5)
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Generative Adversarial Networks
Results
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Generative Adversarial Networks
Latent Arithmetic
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Generative Adversarial Networks

GAN Hacks

@ GAN hacks proposed by Soumit Chintala et al

@ Sample from Gaussian instead of uniform.

@ Use batchnorm in both generator and discriminator

e Stability tricks from RL

@ Dropouts in both train and test time in both G and D
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Generative Adversarial Networks

Applications

@ Image Generation,Progressive GAN (NVIDIA)
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Generative Adversarial Networks
Applications

Figure: Results by Progressive GAN
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Generative Adversarial Networks

Applications

e Translating Image, Perarnau et al, Invertible conditional GANsfor
image editing.
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Generative Adversarial Networks

Applications
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Figure: Results of ICGAN
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Generative Adversarial Networks

Applications

@ Stack GAN, Zhang et al, Text to Photo Realisitc Image Synthesis.
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Figure: Stack GAN archtecture
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Generative Adversarial Networks

Applications
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Figure: Stack GAN Results
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o Generative Adversarial Networks (GANs)
e 3D GANs

@ Domain Adaptation
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3D GANs

@ How to extend the GANSs for 3D shapes?

@ Learning a Probabilistic Latent Space of Object Shapes via 3D
Generative-Adversarial Modeling (MIT)
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Figure: The architecture of generator in 3D GAN
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3D GANs

Results

@ Provided smooth interpolations
@ Video: https://youtu.be/mfx7ulkUtCI
@ Disrciminator can be used for classification (with minimal supervision)

Supervision Pretraining Method Classification (Accuracy)
ModelNet40  ModelNet10
ImageNet MVCNN [Suetal, 20154] 90.1% -
& MVCNN-MultiRes [Qi et al., 2016] 91.4% -
Category labels 3D ShapeNets [Wu et al., 2015] 71.3% 83.5%
None DeepPano [Shictal., 2015] 77.6% 85.5%
VoxNet [Maturana and Scherer, 2015] 83.0% 92.0%
ORION [Sedaghat et al., 2016] - 93.8%
SPH [Kazhdan et al., 2003] 68.2% 79.8%
LFD [Chen et al., 2003] 75.5% 79.9%
Unsupervised - T-L Network [Girdhar et al.,, 2016] 74.4% -
VConv-DAE [Sharma et al., 2010] 75.5% 80.5%
3D-GAN (ours) $33% 91.0%

Figure: Classification Results
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https://youtu.be/mfx7uAkUtCI

GAN for point clouds

@ Learning Representations and Generative Models for 3D Point Clouds,
Panos et al 2017.

@ Generator and Decoder consists of FC layers. The Autoencoder has
1-D convolutions.

@ Used a pretrained autoencoder based on EMD (or Chamfer) loss to
encode the images first.
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GAN for point clouds

Results

p@FE @ oo T =T

Figure: Results on test dataset. Left shows ground truth and the right image
shows the reconstruction
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GAN for point clouds

Results

Figure: Interpolation
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3D Object Generation and Reconstruction

3D-IWGAN 3D Generation:
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Figure: Improved Wasserstein GAN
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3D Object Generation and Reconstruction
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Figure: 3D Shape Completion
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o Generative Adversarial Networks (GANs)
e 3D GANs

e Domain Adaptation
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Domain Adaptation

Motivation

@ Large annotated data is very expensive to obtain. (ImageNet, MS
COCO)

@ Alternative? Use synthetic data. (do not generalize to real images)

@ Domain Adaptation: Transfer knowledge from source domain
(labelled) to target domain (no labels).
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Domain Adaptation

Motivation

@ Unsupervised Domain Level Adaptation with GANs, K. Bousmalllis et
al, 2017

o Goal is to come up with a classifier trained on source domain and can
generalize to target domain.

@ Previous works coupled the classifier and the task.
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Domain Adaptation

Architecture
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Figure 2. An overview of the model architecture. On the left, we depict the overall model architecture following the style in [34]. On the
right, we expand the details of the generator and the discriminator components. The generator G generates an image conditioned on a
synthetic image x° and a noise vector z. The discriminator D discriminates between real and fake images. The task—specific classifier T
assigns task—specific labels y to an image. A convolution with stride 1 and 64 channels is indicated as n64s1 in the image. Irelu stands for
leaky ReLU nonlinearity. BN stands for a batch normalization layer and FC for a fully connected layer. Note that we are not displaying
the specifics of T" as those are different for each task and decoupled from the domain adaptation process.
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Domain Adaptation
Results

oxz.zvstww

Figure 3. Visualization of our model’s ability to generate samples
when trained to adapt MNIST to MNIST-M. (a) Source images x*
from MNIST; (b) The samples adapted with our model G(x°, z)
with random noise z; (c) The nearest neighbors in the MNIST-M
training set of the generated samples in the middle row. Differ-
ences between the middle and bottom rows suggest that the model
is not memorizing the target dataset.
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Conclusion

@ GANs are powerful tools that help to give the power of imagination to
Al

@ Applications in media and fashion (Adobe, Amazon)

@ Can they crack the unsupervised learning problem? (Research!)
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