

Lecture 10:

3D Parametric Models

Hao Su and Ronald Yu

Feb 1, 2018

Why 3D Deep Learning

- To make money
 - Extra data
- How to relate 2D images with the 3D world that we live in?
- Can we exploit structures and patterns that exist in 3D data but not in images?
 - Geometric Properties
 - 3D data contains structures
 - 3D structures physically should make sense
 - It's easier to describe these physical structures

Today's Lecture

- 3D Mesh Parameterization and Manipulation
 - What makes mesh manipulation possible?
- 3D Parametric Models and Applications
 - Use several tricks
 - Consider what motivates these tricks
 - Can we automate these tricks?
- Brief overview on some of the cuter recent deep learning research using parametric models (2015-Dec. 2017)
 - Research uses these tricks
 - Can we have research that learns tricks?

Last time

- Learning on unstructured 3D data (point clouds)
- Pros:
 - Easy to capture (depth scanner, multi-view)
 - Generalizable (easy to generate point clouds regardless of data)
 - Simple data structure
 - Great for deep learning!
 - Interesting AI Problems:
 - How can AI understand the 3D world?
 - How can AI relate 2D images to the 3D world?

Last time

- Learning on unstructured 3D data (point clouds)
- Pros:
 - Easy to capture (depth scanner, multi-view)
 - Generalizable (easy to generate point clouds regardless of data)
 - Simple data structure
 - Great for deep learning!
 - Useful application\$ (e.g. \$elf driving car\$, robotic\$)

Noisy and unstructured

[FLAME, SIGGRAPH Asia 2017]

Hao Su and Ronald Yu

- Noisy and unstructured
- Lack of topology loses information

Hao Su and Ronald Yu

- Noisy and unstructured
- Lack of topology loses information

- Noisy and unstructured
- Lack of topology loses information
- Difficult to manipulate

Why deformations?

- Sculpting, customization
- Character posing, animation

[USC CSCI 621]

- Noisy and unstructured
- Lack of topology loses information
- Difficult to manipulate
- Hence, limited application\$\$\$

Why deformations?

- Sculpting, customization
- Character posing, animation

[USC CSCI 621]

Hao Su and Ronald Yu

Polygon Meshes

• All mathematical equations and figures in these slides come from this book or its associated slides

Hao Su and Ronald Yu

Parameterized Meshes

- "a parameterization of a 3D surface is a function putting this surface in oneto-one correspondence with a 2D domain" - the Good Book
- Manipulable
- Consider Parameterization of A Family of Shapes:
 - Fixed Correspondences and Topology

Surface Parameterization

Christian Rössl, INRIA

240

Surface Parameterization

Hao Su and Ronald Yu

Motivation

Many operations are simpler on planar domain

Lévy: Dual Domain Exrapolation, SIGGRAPH 2003

Christian Rössl, INRIA

Motivation

• Texture mapping

Lévy, Petitjean, Ray, and Maillot: *Least squares conformal maps for automatic texture atlas generation*, SIGGRAPH 2002

Christian Rössl, INRIA

OMG Deep Learning!

- Sample application of texture space with deep learning
- Use a deep neural network to render high quality textures using low resolution images
- Style transfer techniques

input picture

output albedo map

rendering

rendering (zoom)

rendering

rendering (zoom)

[Saito et al., CVPR 2017]

Discrete Surfaces: Point Sets, Meshes

[USC CSCI 621]

- Flexible
- Suitable for highly detailed scanned data
- No analytic surface
- No inherent "editability"

Mesh Deformation

Mario Botsch

Mesh Deformation

Mario Botsch

Hao Su and Ronald Yu

Manipulating Parametric Models

- Surface Deformations
 - Linear Method (Minimize stretching and bending)
 - Non-Linear Method (As rigid as possible)
 - Other methods exist but won't discuss
- Space Deformations
 - Won't Discuss
- Linear Parametric Models

[USC CSCI 621]

Modeling Notation

- Mesh deformation by displacement function d
 - Interpolate prescribed constraints
 - Smooth, intuitive deformation
 - ➡Physically-based principles

 $\mathbf{d}\left(\mathbf{p}_{i}\right)=\mathbf{d}_{i}$

Differential Geometry

$$\mathbf{x}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}, \quad (u,v) \in \Omega \subset \mathbb{R}^2,$$

Hao Su and Ronald Yu

Differential Geometry

$$\mathbf{x}_u(u_0, v_0) := \frac{\partial \mathbf{x}}{\partial u}(u_0, v_0) \quad \text{and} \quad \mathbf{x}_v(u_0, v_0) := \frac{\partial \mathbf{x}}{\partial v}(u_0, v_0)$$

are, respectively, the tangent vectors of the two *iso-parameter curves*

$$C_{u}(t) = x(u_0 + t, v_0)$$
 and $C_{v}(t) = x(u_0, v_0 + t)$

Hao Su and Ronald Yu

Differential Geometry

Hao Su and Ronald Yu

First Fundamental Form

- The first fundamental form acts as a dot product into parameter space
- Gives us a notion of length and angle

$$\mathbf{w}_{1}^{T}\mathbf{w}_{2} = (\mathbf{J}\bar{\mathbf{w}}_{1})^{T} (\mathbf{J}\bar{\mathbf{w}}_{2}) = \bar{\mathbf{w}}_{1}^{T} (\mathbf{J}^{T}\mathbf{J}) \bar{\mathbf{w}}_{2}$$
$$\mathbf{I} = \mathbf{J}^{T}\mathbf{J} = \begin{bmatrix} E & F \\ F & G \end{bmatrix} := \begin{bmatrix} \mathbf{x}_{u}^{T}\mathbf{x}_{u} & \mathbf{x}_{u}^{T}\mathbf{x}_{v} \\ \mathbf{x}_{u}^{T}\mathbf{x}_{v} & \mathbf{x}_{v}^{T}\mathbf{x}_{v} \end{bmatrix}$$
$$l(a,b) = \int_{a}^{b} \sqrt{(u_{t},v_{t})\mathbf{I}(u_{t},v_{t})^{T}} dt$$

$$= \int_a^b \sqrt{Eu_t^2 + 2Fu_t v_t + Gv_t^2} \mathrm{d}t.$$

Hao Su and Ronald Yu

Second Fundamental Form

Second Fundamental Form gives a notion of curvature

where \mathbf{I} denotes the second fundamental form defined as

$$\mathbf{I} = egin{bmatrix} e & f \ f & g \end{bmatrix} := egin{bmatrix} \mathbf{x}_{uv}^T \mathbf{n} & \mathbf{x}_{uv}^T \mathbf{n} \ \mathbf{x}_{uv}^T \mathbf{n} & \mathbf{x}_{vv}^T \mathbf{n} \end{bmatrix}.$$

Hao Su and Ronald Yu

Derivation Steps

Physically-Based Deformation

• Non-linear stretching & bending energies

$$\int_{\Omega} k_s \left\| \mathbf{I} - \mathbf{I}' \right\|^2 + k_b \left\| \mathbf{I} - \mathbf{I}' \right\|^2 \, \mathrm{d}u \mathrm{d}v$$

stretching bending

• Linearize energies

$$\int_{\Omega} k_s \left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right) + k_b \left(\|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right) \mathrm{d}u \mathrm{d}v$$

stretching bending

Mario Botsch

Physically-Based Deformation

Minimize linearized bending energy

$$E(\mathbf{d}) = \int_{\mathcal{S}} \|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \, \mathrm{d}\mathcal{S} \quad f(x) \to \min$$

Variational calculus, Euler-Lagrange PDE

$$\Delta^2 \mathbf{d} := \mathbf{d}_{uuuu} + 2\mathbf{d}_{uuvv} + \mathbf{d}_{vvvv} = 0$$

$$f'(x) = 0$$

"Best" deformation that satisfies constraints

Mario Botsch

Deformation Energies

Mario Botsch

Surface Deformation [USC CSCI 621]

- Smooth large scale deformation
- Local as-rigid-as-possible behavior
 - Preserves small-scale details

Cell Deformation Energy [USC CSCI 621]

Vertex neighborhoods should deform rigidly

$$\sum_{j \in N(i)} \left\| \left(\mathbf{p}'_j - \mathbf{p}'_i \right) - \mathbf{R}_i \left(\mathbf{p}_j - \mathbf{p}_i \right) \right\|^2 \to \min$$

As-Rigid-As-Possible Modeling

[USC CSCI 621]

Start from naïve Laplacian editing as initial guess

Lecture 10 - 34

As Rigid As Possible Results

[As Rigid As Possible Surface Modeling, SGP 2007]

Hao Su and Ronald Yu

In Summary

- Exploit Geometry
- Make use of physical structure
- Minimize Stretching and Bending
- Maximize Rigidity

Low-Dimensional Parametric Models

- What if we already know what object we are dealing with?
- For 3D Reconstruction, remove the difficulty in guessing the correct shape from a 2D image
- We can introduce a template shape and a parameterization that deforms the template appropriately
 - Create a shape space
- Instead estimating the whole model we estimate the low-dimensional parameterization
- We can parameterize deformations into fast linear operations on a low-dimensional space

Low-Dimensional Parametric Models

- Pros:
 - Leverage our prior knowledge of the task/our world
 - Low-Dimensional
 - Accurate
 - Won't fall off the shape manifold. Always generate plausible shapes
 - Easy to deform

Some Parametric Models In Industry

- Some common parametric models include:
 - Faces
 - Bodies
 - Hands

Hao Su and Ronald Yu

Performance to Facial Animation [USC CSCI 621]

Hao Su and Ronald Yu

[USC CSCI 621]

Hao Su and Ronald Yu

Requirements for a Practical System

[USC CSCI 621]

1. Real-time performance

2.Robustness to noise

3. High-level semantics

Building Expression Space

[USC CSCI 621]

tracked template

input scan

Hao Su and Ronald Yu

Rigging & Animation [USC CSCI 621]

N-Dim Expression Space [USC CSCI 621]

Lecture 10 - 45

Blendshape Retargeting

many blendshapes

SIGGRAPH 2010

43

[USC CSCI 621]

Hao Su and Ronald Yu

Pipeline Overview

[USC CSCI 621]

Hao Su and Ronald Yu

Hollywood Face Models

Hao Su and Ronald Yu

Building Initial Blendshape Model

[USC CSCI 621]

Public Face Models

[Basel Face Model, 1997, 2009, 2017]

[FaceWarehouse, TOG 2014]

Hao Su and Ronald Yu

Building Initial Blendshape Models

- Exploit commonalities among face data
- Create a low-dimensional shape space that you can interpolate inside of
- We have used data to largely automate the process
- Difficult future work:
 - Are there even more basic commonalities among nature that we can exploit?
 - Can we learn to exploit these basic commonalities automatically?

Pipeline Overview

[USC CSCI 621]

Solving for Pose and Blend-shapes

Lecture 10 - 53

First extract facial landmarks

input performance

input video with markers

Solving for Pose and Blend-shapes

- First extract facial landmarks
- Markerless capture
- Democratizing human body digitization!

[Face++]

Hao Su and Ronald Yu

Solving for Pose and Blend-shapes

[Face++]

Given a set of (p^i, q^i) correspondences where p^i denotes a pixel in the input image and q^i denotes its corresponding vertex in the 3DMM, we minimize the following energy function defined over the parameters $\mathcal{X} = (f, \mathbf{R}, \mathbf{t}, \alpha_{id}, \alpha_{exp})$:

$$E(\mathcal{X}) = E_{data}(\mathcal{X}) + E_{reg}(\mathcal{X}), \qquad (3)$$

$$E_{data}(\mathcal{X}) = \sum_{i} w_{i} ||p^{i} - \prod_{f} (\mathbf{R}S_{q^{i}} + \mathbf{t})||^{2}, \qquad (3)$$

$$E_{reg}(\mathcal{X}) = w_{id} \sum_{id,i} (\frac{\alpha_{id,i}}{\sigma_{id,i}})^{2} + w_{exp} \sum_{exp,i} (\frac{\alpha_{exp,i}}{\sigma_{exp,i}})^{2}, \qquad S_{q^{i}} = (\bar{S} + A_{id}\alpha_{id} + A_{exp}\alpha_{exp})_{q^{i}}$$
[Yu et al., ICCV 2017]

Solving for Pose and Blend-shapes...

- ...with deep learning!
- 3DFFA directly learns pose and shape parameters

[3DDFA, CVPR 2016]

```
Hao Su and Ronald Yu
```

Solving for Pose and Blend-shapes...

- ...with deep learning!
- 3DFFA directly learns pose and shape parameters
- Allows face-tracking for side-faces and difficult occlusions because deep learning

[3DDFA, CVPR 2016]

Hao Su and Ronald Yu

Solving for Pose and Blend-shapes...

- ...with deep learning!
- 3DFFA directly learns pose and shape parameters
- Allows face-tracking for side-faces and difficult occlusions because deep learning

[3DDFA, CVPR 2016]

Hao Su and Ronald Yu

More face models and deep learning

- Unsupervised deep learning also possible using parametric models
- Passes knowledge of the model into the encoder

[MOFA, ICCV 2017]

Pipeline Overview

[USC CSCI 621]

Doing it all...

• ...with deep learning!

Name	Description
input	Input $1 \times 240 \times 320$ image
conv1a	Conv 3×3 , $1 \rightarrow 64$, stride 2×2 , ReLU
conv1b	Conv 3×3 , $64 \rightarrow 64$, stride 1×1 , ReLU
conv2a	Conv 3×3 , $64 \rightarrow 96$, stride 2×2 , ReLU
conv2b	Conv 3×3 , $96 \rightarrow 96$, stride 1×1 , ReLU
conv3a	Conv 3×3 , $96 \rightarrow 144$, stride 2×2 , ReLU
conv3b	Conv 3 \times 3, 144 \rightarrow 144, stride 1 \times 1, ReLU
conv4a	Conv 3 \times 3, 144 \rightarrow 216, stride 2 \times 2, ReLU
conv4b	Conv 3 \times 3, 216 \rightarrow 216, stride 1 \times 1, ReLU
conv5a	Conv 3 \times 3, 216 \rightarrow 324, stride 2 \times 2, ReLU
conv5b	Conv 3 \times 3, 324 \rightarrow 324, stride 1 \times 1, ReLU
conv6a	Conv 3×3 , $324 \rightarrow 486$, stride 2×2 , ReLU
conv6b	Conv 3 \times 3, 486 \rightarrow 486, stride 1 \times 1, ReLU
drop	Dropout, $p = 0.2$
fc	Fully connected 9720 \rightarrow 160, linear activation
output	Fully connected 160 \rightarrow N_{out} , linear activation

[Laine et al., SCA 2017]

Some Parametric Models

- Some common parametric models include:
 - Faces
 - Bodies
 - Hands

SMPL (SIGGRAPH Asia 2015)

SMPL: Skinned Multi-Person Linear model

Matthew LoperNaureen MahmoodJavier RomeroGerard Pons-MollMichael J. Black

MAX-PLANCK-GESELLSCHAFT SIGGRAPH Asia 2015

Hao Su and Ronald Yu

SIMPLify (ECCV 2016)

- Learn to fit a human body model to a single image
- First estimate pose points using CNN (only CNN methods perform well)
- Fit body parameters to pose points

Hao Su and Ronald Yu

Fitting Parameters...

• ...using deep learning

[Tung et al., NIPS 2017]

Some Parametric Models

- Some common parametric models include:
 - Faces
 - Bodies
 - Hands

Hand Models

Rotunda

Desk

Fruits

Kitchen

[Mueller et al., ICCV 2017]

Hao Su and Ronald Yu

Conclusion

- 3D structures carry a geometric and physical meaning that classical geometers and graphics people have exploited
- Many graphics/geometry problems make use of knowledge and assumptions of our world for better performance
 - Exploit commonalities
 - Low-Dimensional Parametric Models
 - Easy Deformation
 - Easy 3D estimation from a single image
- Deep learning is everywhere
- Can we learn these assumptions?