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Differential Geometry
Surfaces

Instructor: Hao Su



Motivation

* Understand the structure of the surface

— Properties: smoothness, “curviness”, important
directions

* How to modify the surface to change these properties

* What properties are preserved for different
modifications

* The math behind the scenes for many geometry
processing applications
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Differential Geometry

* M.P. do Carmo: Differential Geometry of Curves and
Surfaces, Prentice Hall, 1976

Leonard Euler (1707 - 1783) Carl Friedrich Gauss (1777 - 1855)



Differential Geometry: Sufaces

z(u,v)
x(2%,v) = 'yE'u,, 'ug , (u,7) € R




Differential Geometry: Surfaces

 Continuous surface

« Normal vector

z(u,v)
x('u.,'u) = ( 'y(u: 'U) ) : ('u': 'U) € R

z(u,v)

X

n = (Xy X Xy)/ |2 X x|

— assuming regular parameterization, I.e.

Xy XXy #0



Normal Curvature

Xy X Xy
[%e X X0

If x, and x are orthogonal:

t = cos¢i +sin¢i

||| |y ||



Normal Curvature




Surface Curvature

* Principal Curvatures

— maximum curvature K1 = mMaxX Ky (@)
é
— minimum curvature Ko = m‘gn nn(¢)

27
. Mean Curvature = Fttk2 _ 1 / b (@) do)
2 27 0

» Gaussian Curvature K = K{ -+ Ko



Principal Curvature

planes normal
of principal / vector
curvatures

tangent
plane

Euler’s Theorem: Planes of principal curvature are orthogonal

and independent of parameterization.

x(0) = x, cos” 0+, sin” 0 0 = angle with «



Curvature




Gauss-Bonnet Theorem

For ANY closed manifold surface with Euler number
Y=2-2g:

IK=27¢(

JK( E) M) = [K( /\\)) =4t



Gauss-Bonnet Theorem

Example
= Sphere _n
2 kl — k2: 1/7/' \ \)
m K:klkzzl/l”z -

IK=47rr2-L2=47r
4

- Manipulate sphere

- New positive +negative curvature

= Cancel out!



High-Level Questions

v A =

(a)KG>0,KH>0 (BKG>0,KH<0 (c)KG=0,KH=0
elliptic concave elliptic convexe plane

(A)KG=0,KH>0 ©)KG=0,KH<0 HOKG<0,KH=0

parabolic concave parabolic convexe saddle (hyperbolic)

(2)KG<0,KH<0 (WKG<0,KH>0 _
hyperbolic-like hyperbolic-like

http://pubs.rsc.org/is/content/articlelanding/20 | 3/cp/c3¢cp44375b



http://pubs.rsc.org/is/content/articlelanding/2013/cp/c3cp44375b

/&"“//f Frenet Frame: Curves in R’

o (T 0 x O\ /T
d_ N — — K O T N
S\ B 0 —7 0/ \B

Binormal: Tx N

Curvature: In-plane motion
Torsion: Out-of-plane motion

Theorem:




Can curvature/torsion
of a curve help us
understand surfaces’



Unit Normal




Gauss Map

http://mesh.brown.edu/3DPGP-2007//pdfs/sg06-courseO 1 .pdf


http://mesh.brown.edu/3DPGP-2007/pdfs/sg06-course01.pdf

Signed Curvature on Plane Curves

T(s) = Y(COS 0(s),sinf(s))
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http://mathworld.wolfram.com/images/eps-gif/UnitSphere 800.gif



http://mathworld.wolfram.com/images/eps-gif/UnitSphere_800.gif

Differential of a Map

o : M — N
> dqﬁp . TpM — Tgo(p)N

Linear map of tangent spaces

dpp(7'(0)) := (@ o) (0)

@(x)

<M >
TN



Calculation on Board

Where is the
derivative of N?

Spoiler alert: TS



DN, : T,S — T,S

l

Ap(V, W) := =(DN,(V), W)



Relationship to Curvature of Curves



http://www.solitaryroad.com/c335.html

A, is Self-Adjoint

Means that
A, (V,W)=—(DN,(V),W) =— < V,DN,(W))
In matrix form,

AV, W) =V JW J symmetric

Validate by yourself if interested



Principal Directions and Curvatures

Ko = K1 COS° 0 + Ko sin® 0

K1, kK eigenvalues of A,; Ty, T, eigenvectors of A,



Principal Curvatures




Extrinsic Curvature

K = K1kR9o — det II


http://www.sciencedirect.com/science/article/pii/S0010448510001983

Interpretation

Positive and negative curvature is ignored, Saddle surfaces are shown Inflections are shown

both have the same Gaussian curvature in the blue/purple colours in green 0.000
136990.45
31360178
562521.56
988052.50
fat
-988052.7
-562521.5
-313601.7
-136990.4
-0.000

<2

<2

Curvature Evaluation Curvature Evaluation [l

Type! Princ. Max ¥ Type Mean | 0,000

446,287

Principal Min and Max

can change the direction

of evaluation and give

sharp color changes that , : =

don’t actually indicate = :

ay\'y eVYovs 4 . -3218.875
-1832.581

1021.651

1832.581

3213.874

-1021,651
-446.287

-0,000

Mean avoids this by averaging both directions o

http://www.aliasworkbench.com/theoryBuilders/TB/ evaluate3.htm



http://www.aliasworkbench.com/theoryBuilders/TB7_evaluate3.htm

Uniqueness Result

Theorem:
A smooth surface is determined up to

rigid motion by its first and second
fundamental forms.



Curvature
completely determines
local surface geometry.



-
O
fd
Q.
T
9
Vp)
)
a
(o)
Y
(o
D
Y
D

Gaussian

http://graphics.ucsd.edu/~iman/Curvature/


http://graphics.ucsd.edu/%7Eiman/Curvature/

Smoothing and Reconstruction

Linear Surface Reconstruction from Discrete Fundamental Forms on Triangle Meshes
Wang, Liu, and Tong
Computer Graphics Forum 31.8 (2012)



Fairness Measure

Triangular Surface Mesh Fairing via

Gaussian Curvature Flow

Zhao, Xu
Journal of Computational andApplied
Mathematics 195.1-2 (2006)

a,(J /I(d/(% more




Guiding Rendering

Highlight Lines for Conveying Shape
DeCarlo, Rusinkiewicz

NPAR (2007)


http://www.cs.rutgers.edu/%7Edecarlo/pubs/npar07.pdf

Guiding Meshin

AOATRINLRRRE TR
I

input mesh direction fields sampling meshing

Anisotropic Polygonal Remeshing
Alliez et al.
SIGGRAPH (2003)
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http://upload.wikimedia.org/wikipedia/commons/f/fb/Dolphin_triangle_mesh.png

Standard Citation

ESTIMATING THE TENSOR OF CURVATURE OF A
SURFACE FROM A POLYHEDRAL APPROXIMATION

Gabriel Taubin

(CClY 7995

IBM T.].Watson Research Center
P.O.Box 704, Yorktown Heights, NY 10598

taubin@watson.ibm.com

Abstract

Estimating principal curvatures and principal direc-
tions of a surface from a polyhedral approximation
with a large number of small faces, such as those pro-
duced by iso-surface construction algorithms, has be-
come a basic step in many computer vision algorithms.
Particularly in those targeted at medical applications.
In this paper we describe a method to estimate the ten-
sor of curvature of a surface at the vertices of a poly-
hedral approximation. Principal curvatures and prin-
cipal directions are obtained by computing in closed
form the eigenvalues and eigenvectors of certain 3 x 3
svmmetric matrices defined bv inteoral formiuilas and

mate principal curvatures at the vertices of a triangu-
lated surface. Both this algorithm and ours are based
on constructing a quadratic form at each vertex of
the polyhedral surface and then computing eigenval-
ues (and eigenvectors) of the resulting form, but the
quadratic forms are different. In our algorithm the
quadratic form associated with a vertex is expressed as
an integral, and is constructed in time proportional to
the number of neighboring vertices. In the algorithm of
Chen and Schmitt, it is the least-squares solution of an
overdetermined linear system, and the complexity of
constructing it is quadratic in the number of neighbors.
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Taubin Matrix

1 7T
M:——/ /QQTQTQTdQ
2T

— T
Ko := K1 C0S° 0 + Ko sin® 0
Ty :=T7cosO +1T5sin6



Taubin Matrix

1 T
M — /{QTQTQT d@
2T

-igenvectors are N, T1,and 15
-lgenvalues are ilq + le and 1_K1 + 31{2
8 8 8 8

Drgve at home /



Taubin’s Approximation

Z Wiikiidq; TT

r\/UZ



Taubin’s Approximation
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