UCSanDiego

Shape
 Representations

Instructor: Hao Su

IMPLICIT \rightarrow MESH

Marching Cubes

Extracting the Surface

- Wish to compute a manifold mesh of the level set

Sample the SDF

Sample the SDF

Sample the SDF

Marching Cubes

Converting from implicit to explicit representations.
Goal: Given an implicit representation: $\{\mathbf{x}$, s.t. $f(\mathbf{x})=0\}$
Create a triangle mesh that approximates the surface.

Marching Squares (2D)

Given a function: $\quad f(x)$

- $f(\mathbf{x})<0$ inside
- $f(\mathbf{x})>0$ outside

1. Discretize space.
2. Evaluate $f(x)$ on a grid.

Marching Squares (2D)

Given a function: $\quad f(x)$

- $f(\mathbf{x})<0$ inside
- $f(\mathbf{x})>0$ outside

1. Discretize space.
2. Evaluate $f(x)$ on a grid.
3. Classify grid points (+/-)
4. Classify grid edges
5. Compute intersections
6. Connect intersections

Marching Squares (2D)

Computing the intersections:

- Edges with a sign switch contain intersections.

$$
\begin{aligned}
& f\left(x_{1}\right)<0, f\left(x_{2}\right)>0 \Rightarrow \\
& f\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)=0
\end{aligned}
$$

$$
\text { for some } 0 \leq t \leq 1
$$

- Simplest way to compute t : assume f is linear between $x 1$ and $x 2$:

$$
t=\frac{f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)}
$$

Marching Squares (2D)

Connecting the intersections:

- Grand principle: treat each cell separately!
- Enumerate all possible inside/outside combinations.

Marching Squares (2D)

Connecting the intersections:

- Grand principle: treat each cell separately!
- Enumerate all possible inside/outside combinations.
- Group those leading to the same intersections

Marching Squares (2D)

Connecting the intersections:

- Grand principle: treat each cell separately!
- Enumerate all possible inside/outside combinations.
- Group those leading to the same intersections.
- Group equivalent after rotation.
- Connect intersections

Marching Squares (2D)

Connecting the intersections:
Ambiguous cases:

Break contour

Join contour

Two options:

1) Can resolve ambiguity by subsampling inside the cell.
2) If subsampling is impossible, pick one of the two possibilities.

Marching Cubes (3D)

Same machinery: cells \rightarrow cubes (voxels), lines \rightarrow triangles

- 256 different cases - 15 after symmetries, 6 ambiguous cases
- More subsampling rules $\rightarrow 33$ unique cases

explore ambiguity to avoid holes!

Marching Cubes (3D)

Main Strengths:

- Very multi-purpose.
- Extremely fast and parallelizable.
- Relatively simple to implement.
- Virtually parameter-free

Main Weaknesses:

- Can create badly shaped (skinny) triangles.
- Many special cases (implemented as big lookup tables).
- No sharp features.

MESH-> POINT CLOUD

Sampling

From Surface to Point Cloud - Why?

- Points are simple but expressive!
- Few points can suffice
- Flexible, unstructured, few constraints
- Also: ML applications!

From Surface to Point Cloud - Why?

- Points are simple but expressive!
- Few points can suffice
- Flexible, unstructured, few constraints
- Also: ML applications!

CAD meshes:
many components bad triangles connectivity problems

the problem: sampling the mesh

Farthest Point Sampling

- Introduced for progressive transmission/acquisition of images
- Quality of approximation improves with increasing number of samples
- as opposed eg. to raster scan
- Key Idea: repeatedly place next sample in the middle of the leastknown area of the domain.

Gonzalez 1985, "Clustering to minimize the maximum intercluster distance" Hochbaum and Shmoys 1985, "A best possible heuristic for the k-center problem"

Pipeline

1.Create an initial sample point set S

- Image corners + additional random point.

2. Find the point which is the farthest from all point in S

$$
\begin{aligned}
d(p, S) & =\max _{q \in A}(d(q, S)) \\
& =\max _{q \in A}\left(\min _{0 \leq i<N}\left(d\left(q, s_{i}\right)\right)\right)
\end{aligned}
$$

3. Insert the point to S and update the distances
4. While more points are needed, iterate

Farthest Point Sampling

- Depends on a notion of distance on the sampling domain
- Can be made adaptive, via a weighted distance

Eldar et al. 1997, "The Farthest Point Strategy for Progressive Image Sampling"

FPS on surfaces

- What's an appropriate distance?

On-Surface Distances

- Geodesics: Straightest and locally shortest curves

Discrete Geodesics

- Recall: a mesh is a graph!
- Approximate geodesics as paths along edges

Fast Marching Geodesics

- A better approximation: allow fronts to cross triangles!

Kimmel and Sethian 1997, "Computing Geodesic Paths on Manifolds"

Software

- Libigl http://libigl.github.io/libig//tutorial/tutorial.html
- MATLAB-style (flat) C++ library, based on indexed face set structure
- OpenMesh www.openmesh.org
- Mesh processing, based on half-edge data structure
- CGAL www.cgal.org
- Computational geometry
- MeshLab http://www.meshlab.net/
- Viewing and processing meshes

Software

- Alec Jacobson's GP toolbox
- https://github.com/alecjacobson/gptoolbox
- MATLAB, various mesh and matrix routines
- Gabriel Peyre's Fast Marching Toolbox
- https://www.mathworks.com/matlabcentral/ fileexchange/6110-toolbox-fast-marching
- On-surface distances (more next time!)
- OpenFlipper https://www.openflipper.org/
- Various GP algorithms + Viewer

Topology of Surfaces

(slides mostly by Glenn Eguchi)

Topology of Surfaces

- We will say two surfaces M and N are topologically equivalent or are of the same topological type if

M and N are diffeomorphic

- We normally write $M \approx N$ to denote this

A square under a diffeomorphism from the square onto itself.

Sphere

Topology by a Single Number

- It's an astonishing fact that to determine whether two surfaces are topologically equivalent (diffeomorphic) comes down to computing exactly one number of that surface.
- That number is called the Euler characteristic.

Triangulation

- A triangle T in M is a simple region in M bounded by 3 smooth curve segments.

- Here `simple' means that T is topologically a disk

Triangulation

- A triangulation of M is a decomposition of M into a finite number of triangles $T_{1}, T_{2}, \ldots, T_{n}$ such that
(1) $\bigcup_{i=1}^{n} T_{i}=M$
(2) If $T_{i} \cap T_{j} \neq \emptyset$, then $T_{i} \cap T_{j}$ is either a common edge or a vertex.
- It's a fact (we will not prove) that every compact surface can be triangulated.

Example. The figure below shows a triangulation of the sphere. Note that the edges of the triangles are great circles and hence geodesics. The triangulation has the same topology type as a tetrahedron. The number of faces is $F=4$, the number of edges is $E=6$, and the number of vertices is $V=4$.

Tetrahedron

Euler Characteristic

Definition. Let M be a compact surface and consider any triangulation of M. Then the Euler characteristic of M is

$$
\chi(M)=V-E+F
$$

where

$$
\begin{aligned}
& V=\text { number of vertices } \\
& E=\text { number of edges } \\
& F=\text { number of faces }
\end{aligned}
$$

The following fact (we will not prove) justifies the definition of $\chi(M)$.
Theorem 6.9. The Euler characteristic $\chi(M)$ does not depend on the particular triangulation of M.

Examples

Name	Image	Euler characteristic
Interval		1
Circle		
Disk		0
Sphere		1
Torus		
(Product of two circles)		

Examples

Genus

- There is an easy way to construct surfaces with different topology. The idea is to `glue' handles onto a sphere.

Sphere with one $=$ genus one handle attached $=$ surface

$\begin{aligned} & \text { Sphere with two } \\ & \text { handles attached }\end{aligned}=\begin{gathered}\text { genus two } \\ \text { surface }\end{gathered}$

Definition. When we construct a surface M in this way with g handles, then we say M is a surface of genus g.

Genus and Euler characteristics

Proposition 6.11. If M is a surface of genus g, then $\chi(M)=2(1-g)$.
The proof follows from a formula involving the connected sum of two surfaces: $\chi\left(M_{1} \# M_{2}\right)=\chi\left(M_{1}\right)+\chi\left(M_{2}\right)-2$.

A more general relationship in high-dimensional space:

$$
\chi(M \# N)=\chi(M)+\chi(N)-\chi\left(S^{n}\right)
$$

