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IMPLICIT — MESH

Marching Cubes
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Extracting the Surface

« Wish to compute a manifold mesh of the level set

F(x)=0->
surface

F(x)<0=->
inside

F(x)>0->
outside




Sample the SDF




Sample the SDF




Sample the SDF




Marching Cubes

Converting from implicit to explicit representations.

Goal: Given an implicit representation: {X, S.t.f(X) — O}

Create a triangle mesh that approximates the surface.

[James Sharman]

Lorensen and Cline, SIGGRAPH ‘87



Marching Squares (2D)

Given a function: f(g;)

* f(x) <0 insid_e
. f(X) S OoutS|de

1. Discretize space.

2. Evaluate f(x)ona grid.




Marching Squares (2D)

Given a function: f(g;)

* f(x) <0 insid_e
. f(X) S OoutS|de
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Discretize space.

Evaluate f(x)ona grid.

Compute intersections

Connect intersections

assify grid points (+/-)
assify grid edges




Marching Squares (2D)

Computing the intersections:

« Edges with a sign switch contain
Intersections.

f(:cl) < 0, f(CIZ‘Q) >0 =
flz1+t(ze —x1)) =0
for some 0 <t <1

« Simplest way to compute t: assume f is
linear between x1 and x2:




Marching Squares (2D)

Connecting the intersections:

» Grand principle: treat each cell separately!
 Enumerate all possible inside/outside combinations.




Marching Squares (2D)

Connecting the intersections:
» Grand principle: treat each cell separately!

 Enumerate all possible inside/outside combinations.
* Group those leading to the same intersections
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Marching Squares (2D)

Connecting the intersections:

» Grand principle: treat each cell separately!
 Enumerate all possible inside/outside combinations.
» Group those leading to the same intersections.

* Group equivalent after rotation.

* Connect intersections

O

O O



Marching Squares (2D)

Connecting the intersections:

Ambiguous cases:

® 0O @O0
o @ © o O ©
O——@ O—@

Break contour Join contour

Two options:
1) Can resolve ambiguity by subsampling inside the cell.
2) If subsampling is impossible, pick one of the two possibilities.



Marching Cubes (3D)

Same machinery: cells — cubes (voxels), lines — triangles

« 256 different cases - 15 after symmetries, 6 ambiguous cases
* More subsampling rules — 33 unique cases

Cases 3 and 6¢

the 15 cases explore ambiguity to avoid holes!

Chernyaev, Marching Cubes 33,95



Marching Cubes (3D)

Main Strengths:

* Very multi-purpose.

« Extremely fast and parallelizable.
* Relatively simple to implement.

* Virtually parameter-free

Main Weaknesses:

« Can create badly shaped (skinny) triangles.
* Many special cases (implemented as big lookup tables).
* No sharp features.



MESH-> POINT CLOUD

Sampling

UCSan Diego




From Surface to Point Cloud - Why?

* Points are simple but expressive!

* Few points can suffice
* Flexible, unstructured, few constraints
* Also: ML applications!

CAD meshes:
many components
bad triangles
connectivity problems



From Surface to Point Cloud - Why?

* Points are simple but expressive!

* Few points can suffice
* Flexible, unstructured, few constraints
* Also: ML applications!

CAD meshes:
many components
bad triangles
connectivity problems

the problem:
sampling the mesh



Farthest Point Sampling

* Introduced for progressive transmission/acquisition of images
* Quality of approximation improves with increasing number of
samples
* as opposed eg. to raster scan
« Key ldea: repeatedly place next sample in the middle of the least-
known area of the domain.

7

Gonzalez 1985, “Clustering to minimize the maximum intercluster distance”
Hochbaum and Shmoys 1985, “A best possible heuristic for the k-center problem”



Pipeline

1.Create an initial sample point set S
* Image corners + additional random point.
2. Find the point which is the farthest from all point in S

d(p,S) = Iglg(d(qa S))

— max( min (d(q, 8:‘)))

gEA \ 0<i<N

3. Insert the point to S and update the distances
4. While more points are needed, iterate



Farthest Point Sampling

* Depends on a notion of distance on the sampling
domain

« Can be made adaptive, via a weighted distance

Eldar et al. 1997, “The Farthest Point Strategy for Progressive Image Sampling”



FPS on surfaces

 What’s an appropriate distance?




On-Surface Distances

» Geodesics: Straightest and locally shortest curves

Distance on
Manifold

Z

cdistance

Isolines - geodesic

Isolines - euclidean



Discrete Geodesics

h
* Approximate geodesics as paths along edges

:amesh is agrap

« Recall

tial vertex
d; = current distance to vertex
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Fast Marching Geodesics

* A better approximation: allow fronts to cross triangles!
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Kimmel and Sethian 1997, “Computing Geodesic Paths on Manifolds”




Software

- Libigl http://libigl.github.io/libigl/tutorial/tutorial.html

- MATLAB-style (flat) C++ library, based on indexed face
set structure

« OpenMesh www.openmesh.org

* Mesh processing, based on half-edge data structure
- CGAL www.cgal.org

- Computational geometry
» MeshLab http://www.meshlab.net/

* Viewing and processing meshes



http://libigl.github.io/libigl/tutorial/tutorial.html
http://www.openmesh.org
http://www.cgal.org
http://www.meshlab.net/

Software

« Alec Jacobson’s GP toolbox

» https://github.com/alecjacobson/gptoolbox
- MATLAB, various mesh and matrix routines
- Gabriel Peyre’s Fast Marching Toolbox

» https://www.mathworks.com/matlabcentral/
fileexchange/6110-toolbox-fast-marching

» On-surface distances (more next time!)
« OpenFlipper https://www.openflipper.org/
- Various GP algorithms + Viewer



https://github.com/alecjacobson/gptoolbox
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://www.openflipper.org/

Topology of Surfaces



Topology of Surfaces

* We will say two surfaces M and N are topologically
equivalent or are of the same topological type if

M and N are diffeomorphic

* We normally write M ~ N to denote this

A square under a diffeomorphism from the square onto itself.
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Topology by a Single Number

* It's an astonishing fact that to determine whether two
surfaces are topologically equivalent (diffeomorphic)
comes down to computing exactly one number of that
surface.

 That number is called the Euler characteristic.



Triangulation

* Atriangle T In M is a simple region in M bounded by 3
smooth curve segments.

K
| — "

* Here simple' means that T is topologically a disk




Triangulation
A triangulation of M is a decomposition of M into a finite

number of triangles 7,,7,,...,T, such that

1) U, Ti=M

(2) ET;NT; #0, then T; N Tj is either a common edge or a vertex.

* |t's a fact (we will not prove) that every compact surface
can be triangulated.



Example. The figure below shows a triangulation of the sphere. Note that
the edges of the triangles are great circles and hence geodesics. The triangu-
lation has the same topology type as a tetrahedron. The number of faces is
F' =4, the number of edges is £ = 6, and the number of vertices is V = 4.

TZQ‘[NLML’O N



Euler Characteristic

Definition. Let M be a compact surface and consider any triangulation of
M. Then the Euler characteristic of M 1is

X(M)=V —E+ F
where

V' = number of vertices

E = number of edges

F' = number of faces

The following fact (we will not prove) justifies the definition of y(M).

Theorem 6.9. The Fuler characteristic x(M) does not depend on the par-
ticular triangulation of M .



Name

Examples

Image

Euler characteristic

Interval ° 1
Circle 0
Disk 1
Sphere 2
Torus 0
(Product of two circles)

Double torus -2




2+2=4

Examples

Triple torus

Real projective plane

Mobius strip

Klein bottle

Two spheres (not connected)

(Disjoint union of two spheres)

Three spheres (not connected)

(Disjoint union of three spheres)




Genus

* There is an easy way to construct surfaces with
different topology. The idea is to glue' handles onto a
sphere.

N N

N’ O

Sphere  with one _ genus ont Sphere  with two _  9en two
hard le attached Surface hand les attached surface

Definition. When we construct a surface M in this way with ¢ handles,
then we say M is a surface of genus g.



Genus and Euler characteristics

Proposition 6.11. If M is a surface of genus g, then x(M) = 2(1 — g).

The proof follows from a formula involving the connected sum of two
surfaces: y(Mi#Msy) = x(M;y) + x(My) — 2.

A more general relationship in high-dimensional space:

X(M#N) = x(M) + x(N) — x(S™)



