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IMPLICIT → MESH
Marching Cubes



Extracting the Surface
• Wish to compute a manifold mesh of the level set
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F(x) > 0 ! 
outside

F(x) = 0 ! 
surface

F(x) < 0 ! 
inside



Sample the SDF



Sample the SDF



Sample the SDF



Marching Cubes

Converting from implicit to explicit representations. 

Goal: Given an implicit representation:     

Create a triangle mesh that approximates the surface. 

Lorensen and Cline, SIGGRAPH ‘87



Given a function: 

•                inside 
•           outside

1. Discretize space. 

2. Evaluate       on a grid.

Marching Squares (2D)

Given a function: 

•                inside 
•           outside



1. Discretize space. 

2. Evaluate       on a grid. 

3. Classify grid points (+/-) 

4. Classify grid edges  

5. Compute intersections 

6. Connect intersections 

Marching Squares (2D)

Given a function: 

•                inside 
•           outside



Computing the intersections:

• Edges with a sign switch contain 
intersections. 

• Simplest way to compute t: assume f is 
linear between x1 and x2:

Marching Squares (2D)



Connecting the intersections:

• Grand principle: treat each cell separately! 
• Enumerate all possible inside/outside combinations.

Marching Squares (2D)



Connecting the intersections:

• Grand principle: treat each cell separately! 
• Enumerate all possible inside/outside combinations. 
• Group those leading to the same intersections

Marching Squares (2D)



Connecting the intersections:

• Grand principle: treat each cell separately! 
• Enumerate all possible inside/outside combinations. 
• Group those leading to the same intersections. 
• Group equivalent after rotation. 
• Connect intersections

Marching Squares (2D)



Connecting the intersections:

Ambiguous cases:

Two options:  
1) Can resolve ambiguity by subsampling inside the cell. 
2) If subsampling is impossible, pick one of the two possibilities.

Marching Squares (2D)



Same machinery: cells → cubes (voxels), lines → triangles

• 256 different cases - 15 after symmetries, 6 ambiguous cases  
• More subsampling rules → 33 unique cases

Chernyaev, Marching Cubes 33,’95 

the 15 cases

Marching Cubes (3D)

explore ambiguity to avoid holes!



Marching Cubes (3D)

Main Strengths: 

• Very multi-purpose. 
• Extremely fast and parallelizable. 
• Relatively simple to implement. 
• Virtually parameter-free

Main Weaknesses: 

• Can create badly shaped (skinny) triangles. 
• Many special cases (implemented as big lookup tables). 
• No sharp features.



MESH-> POINT CLOUD
Sampling



From Surface to Point Cloud - Why?
• Points are simple but expressive! 

• Few points can suffice 
• Flexible, unstructured, few constraints 
• Also: ML applications!

CAD meshes: 
many components 
bad triangles 
connectivity problems



From Surface to Point Cloud - Why?
• Points are simple but expressive! 

• Few points can suffice 
• Flexible, unstructured, few constraints 
• Also: ML applications!

the problem: 
sampling the mesh

CAD meshes: 
many components 
bad triangles 
connectivity problems



Farthest Point Sampling
• Introduced for progressive transmission/acquisition of images 
• Quality of approximation improves with increasing number of 

samples 
• as opposed eg. to raster scan 

• Key Idea: repeatedly place next sample  in the middle of the least-
known area of the domain.

Gonzalez 1985, “Clustering to minimize the maximum intercluster distance” 
Hochbaum and Shmoys 1985, “A best possible heuristic for the k-center problem”



Pipeline

1.Create an initial sample point set S
• Image corners + additional random point.

2. Find the point which is the farthest from all point in S 
 
 
 
 

3. Insert the point to S and update the distances
4. While more points are needed, iterate



Farthest Point Sampling

• Depends on a notion of distance on the sampling 
domain

• Can be made adaptive, via a weighted distance

Eldar et al. 1997, “The Farthest Point Strategy for Progressive Image Sampling”



FPS on surfaces

• What’s an appropriate distance?



On-Surface Distances

• Geodesics: Straightest and locally shortest curves 

isolines - euclidean

isolines - geodesic



Discrete Geodesics
• Recall: a mesh is a graph! 
• Approximate geodesics as paths along edges

Dijkstra’s 
algorithm!



Fast Marching Geodesics

• A better approximation: allow fronts to cross triangles!

Kimmel and Sethian 1997, “Computing Geodesic Paths on Manifolds”



Software
• Libigl http://libigl.github.io/libigl/tutorial/tutorial.html

• MATLAB-style (flat) C++ library, based on indexed face 
set structure

• OpenMesh www.openmesh.org
• Mesh processing, based on half-edge data structure

• CGAL www.cgal.org
• Computational geometry

• MeshLab http://www.meshlab.net/
• Viewing and processing meshes

http://libigl.github.io/libigl/tutorial/tutorial.html
http://www.openmesh.org
http://www.cgal.org
http://www.meshlab.net/


Software
• Alec Jacobson’s GP toolbox

• https://github.com/alecjacobson/gptoolbox
• MATLAB, various mesh and matrix routines

• Gabriel Peyre’s Fast Marching Toolbox
• https://www.mathworks.com/matlabcentral/

fileexchange/6110-toolbox-fast-marching
• On-surface distances (more next time!)

• OpenFlipper https://www.openflipper.org/
• Various GP algorithms + Viewer

https://github.com/alecjacobson/gptoolbox
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://www.openflipper.org/


Topology of Surfaces

(slides mostly by Glenn Eguchi)



Topology of Surfaces

• We will say two surfaces M and N are topologically 
equivalent or are of the same topological type if

• We normally write               to denote this

M and N are diffeomorphic
M ≈ N

A square under a diffeomorphism from the square onto itself.





Topology by a Single Number

• It's an astonishing fact that to determine whether two 
surfaces are topologically equivalent (diffeomorphic) 
comes down to computing exactly one number of that 
surface. 

• That number is called the Euler characteristic.



Triangulation

• A triangle T in M is a simple region in M bounded by 3 
smooth curve segments.

• Here `simple' means that T is topologically a disk



Triangulation

• A triangulation of M is a decomposition of M into a finite 
number of triangles                    such that

• It's a fact (we will not prove) that every compact surface 
can be triangulated.

T1, T2, …, Tn





Euler Characteristic



Examples



Examples



Genus

• There is an easy way to construct surfaces with 
different topology. The idea is to `glue' handles onto a 
sphere.



Genus and Euler characteristics

A more general relationship in high-dimensional space:


