
Shape
Representations

Instructor: Hao Su

Slides credits: Olga Diamanti, Olga Sorkine-Hornung, Daniele Panozzo, ETH Zurich,
Maks Ovsjanikov, Mario Botsch

Shape Representation:  
Origin- and Application-Dependent

• Acquired real-world objects:

• Modeling “by hand”:

• Procedural modeling

• …

Representation Considerations
• How should we represent geometry?

• Needs to be stored in the computer
• Creation of new shapes

• Input metaphors, interfaces…
• What operations do we apply?

• Editing, simplification, smoothing, filtering, repair…
• How to render it?

• Rasterization, raytracing…

Shape Representations
• Points
• Polygonal meshes

Shape Representations
• Parametric surfaces
• Implicit functions
• Subdivision surfaces

Points

Output of Acquisition

Points
• Standard 3D data from a variety of sources

• Often results from scanners
• Potentially noisy 

• Depth imaging (e.g. by triangulation)
• Registration of multiple images

set of raw scans

Points
• Points = unordered set of 3-tuples
• Often converted to other reps

• Meshes, implicits, parametric surfaces
• Easier to process, edit and/or render

• Efficient point processing / modeling requires spatial
partitioning data structure
• Eg. to figure out neighborhoods

shading needs normals!

PARAMETRIC CURVES AND SURFACES

Parametric Representation
• Range of a function

• Surface in 3D:

Parametric Curves

• Example: Explicit curve/circle in 2D

Parametric Curves

• Bezier curves, splines

Basis functions

Curve and control polygon

Parametric Surfaces

• Sphere in 3D

Parametric Curves and Surfaces
• Advantages

• Easy to generate points on the curve/surface
• Separates x/y/z components

• Disadvantages
• Hard to determine inside/outside
• Hard to determine if a point is on  

the curve/surface
• Hard to express more complex curves/surfaces! 
➜cue: piecewise parametric surfaces (eg. mesh)

IMPLICIT CURVES AND SURFACES

Implicit Curves and Surfaces
• Kernel of a scalar function

• Curve in 2D:
• Surface in 3D:  

• Space partitioning

Outside
Curve/Surface
Inside

Implicit Curves and Surfaces

• Kernel of a scalar function
• Curve in 2D:
• Surface in 3D:  

• Zero level set of  
signed distance function

Implicit Curves and Surfaces
• Implicit circle and sphere

Boolean Set Operations
• Union:

• Intersection:

Boolean Set Operations
• Positive = outside, negative = inside
• Boolean subtraction:

• Much easier than for parametric
surfaces!

Implicit Curves and Surfaces
• Advantages

• Easy to determine inside/outside
• Easy to determine if a point is on the curve/surface

• Disadvantages
• Hard to generate points on the curve/surface
• Does not lend itself to (real-time) rendering

A related representation

• Binary volumetric grids

• Can be produced by thresholding the distance function,
or from the scanned points directly

POLYGONAL MESHES

Polygonal Meshes
• Boundary representations of objects

Meshes as Approximations of  
Smooth Surfaces

• Piecewise linear approximation
• Error is O(h2)

25% 6.5% 1.7% 0.4%

3 6 12 24

#faces vs. approximation error

0

7.5

15

22.5

30

0 8 15 23 30

Polygonal Meshes
• Polygonal meshes are a good representation

• approximation O()
• arbitrary topology
• adaptive refinement
• efficient rendering

h2

Polygon

• Vertices:
• Edges:

• Closed:
• Planar: all vertices on a plane
• Simple: not self-intersecting

Polygonal Mesh

vertices edges faces

• A finite set M of closed, simple
polygons Qi is a polygonal mesh

• The intersection of two polygons
in M is either empty, a vertex, or
an edge

Polygonal Mesh
• A finite set M of closed, simple

polygons Qi is a polygonal mesh
• The intersection of two polygons

in M is either empty, a vertex, or
an edge

• Every edge belongs to at least
one polygon

Polygonal Mesh
• A finite set M of closed, simple

polygons Qi is a polygonal mesh
• The intersection of two polygons

in M is either empty, a vertex, or
an edge

• Every edge belongs to at least
one polygon

• Each Qi defines a face of the
polygonal mesh

Polygonal Mesh
• A finite set M of closed, simple

polygons Qi is a polygonal mesh
• The intersection of two polygons

in M is either empty, a vertex, or
an edge

• Every edge belongs to at least
one polygon

• Each Qi defines a face of the
polygonal mesh

Polygonal Mesh
• A finite set M of closed, simple

polygons Qi is a polygonal mesh
• The intersection of two polygons

in M is either empty, a vertex, or
an edge

• Every edge belongs to at least
one polygon

• Each Qi defines a face of the
polygonal mesh

Polygonal Mesh
• A finite set M of closed, simple

polygons Qi is a polygonal mesh
• The intersection of two polygons

in M is either empty, a vertex, or
an edge

• Every edge belongs to at least
one polygon

• Each Qi defines a face of the
polygonal mesh

Polygonal Mesh

4

• Vertex degree or valence = 
number of incident edges

Polygonal Mesh

2

• Vertex degree or valence = 
number of incident edges

Polygonal Mesh
• Boundary: the set of all edges

that belong to only one polygon
• Either empty or forms  

closed loops
• If empty, then the polygonal

mesh is closed

Triangulation
• Polygonal mesh where every face

is a triangle

• Simplifies data structures
• Simplifies rendering
• Simplifies algorithms
• Each face planar and convex
• Any polygon can be triangulated

Triangulation
• Polygonal mesh where every face

is a triangle

• Simplifies data structures
• Simplifies rendering
• Simplifies algorithms
• Each face planar and convex
• Any polygon can be triangulated

Triangle Meshes
• Connectivity: vertices, edges, triangles
• Geometry: vertex positions

Data Structures
• What should be stored?

• Geometry: 3D coordinates
• Connectivity

• Adjacency relationships
• Attributes

• Normal, color, texture
coordinates

• Per vertex, face, edge

Simple Data Structures: Triangle List
• STL format (used in CAD)
• Storage

• Face: 3 positions
• 4 bytes per coordinate
• 36 bytes per face

• on average: f = 2v (**euler)
• 72*v bytes for a mesh  

with v vertices
• No connectivity information

Triangles
0 x0 y0 z0

1 x1 x1 z1

2 x2 y2 z2

3 x3 y3 z3

4 x4 y4 z4

5 x5 y5 z5

6 x6 y6 z6

...

Simple Data Structures:Indexed Face Set
• Used in formats
• OBJ, OFF, WRL
• Storage

• Vertex: position
• Face: vertex indices
• 12 bytes per vertex
• 12 bytes per face
• 36*v bytes for the mesh

• No explicit neighborhood info

Vertices
v0 x0 y0 z0

v1 x1 x1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

v5 x5 y5 z5

v6 x6 y6 z6

...

Triangles
t0 v0 v1 v2

t1 v0 v1 v3

t2 v2 v4 v3

t3 v5 v2 v6

...

queue: halfedge
datastructure!

Summary

Parametric Implicit Discrete/Sampled

• Splines, tensor-product
surfaces

• Subdivision surfaces
• Distance fields
• Metaballs/blobs

• Meshes
• Point set surfaces

CONVERSIONS
Implicit → Mesh
Mesh → Points (next time!)

POINTS → IMPLICIT
Implicit Surface Reconstruction

Implicit Function Approach

• Define a function

with value < 0 outside the
shape and > 0 inside

< 0 > 00

3:f R R→

Implicit Function Approach

< 0 > 00

{ : () 0}x f x =

• Define a function

with value < 0 outside
the shape and > 0 inside

• Extract the zero-set

3:f R R→

SDF from Points and Normals
• Input: Points + Normals
• Normals help to distinguish between inside and outside
• Computed via locally fitting planes at the points

- +

“Surface reconstruction from unorganized points”, Hoppe et al., ACM SIGGRAPH 1992
http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/
http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/
http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/
http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/
http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/
http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/
http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

Smooth SDF
• Find smooth implicit F.
• Scattered data interpolation:

•
• F is smooth
• Avoid trivial

0

0

0 0

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001

Smooth SDF
• Scattered data interpolation:

•
• F is smooth
• Avoid trivial

• Add off-surface constraints

0

0

0 0

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001

Radial Basis Function Interpolation
• RBF: Weighted sum of shifted, smooth kernels

Scalar weights
Unknowns

Smooth kernels
(basis functions)

centered at constrained
points.

For example:

How do we find the weights?

Kernel centers: on- and off-surface points

Radial Basis Function Interpolation

Radial Basis Function Interpolation
• Interpolate the constraints:

0

0

0 0

Radial Basis Function Interpolation
• Interpolate the constraints:

• Symmetric linear system to get the weights:

3n equations
3n variables

RBF Kernels
• Triharmonic:

• Globally supported
• Leads to dense symmetric linear system
• C2 smoothness
• Works well for highly irregular sampling

RBF Kernels
• Polyharmonic spline

• Multiquadratic

• Gaussian

• B-Spline (compact support)

RBF Reconstruction Examples

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001

Off-Surface Points

Insufficient number/
badly placed off-surface points

Properly chosen off-surface points

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001

IMPLICIT → MESH
Marching Cubes

Extracting the Surface
• Wish to compute a manifold mesh of the level set

Im
ag

e
fr

om
: w

w
w

.fa
rf

ie
ld

te
ch

no
lo

gy
.c

om

F(x) > 0 !
outside

F(x) = 0 !
surface

F(x) < 0 !
inside

Sample the SDF

Sample the SDF

Sample the SDF

Marching Cubes

Converting from implicit to explicit representations.

Goal: Given an implicit representation:

Create a triangle mesh that approximates the surface.

Lorensen and Cline, SIGGRAPH ‘87

Given a function:

• inside
• outside

1. Discretize space.

2. Evaluate on a grid.

Marching Squares (2D)

Given a function:

• inside
• outside

1. Discretize space.

2. Evaluate on a grid.

3. Classify grid points (+/-)

4. Classify grid edges

5. Compute intersections

6. Connect intersections

Marching Squares (2D)

Given a function:

• inside
• outside

Computing the intersections:

• Edges with a sign switch contain
intersections.

• Simplest way to compute t: assume f is
linear between x1 and x2:

Marching Squares (2D)

Connecting the intersections:

• Grand principle: treat each cell separately!
• Enumerate all possible inside/outside combinations.

Marching Squares (2D)

Connecting the intersections:

• Grand principle: treat each cell separately!
• Enumerate all possible inside/outside combinations.
• Group those leading to the same intersections

Marching Squares (2D)

Connecting the intersections:

• Grand principle: treat each cell separately!
• Enumerate all possible inside/outside combinations.
• Group those leading to the same intersections.
• Group equivalent after rotation.
• Connect intersections

Marching Squares (2D)

Connecting the intersections:

Ambiguous cases:

Two options:
1) Can resolve ambiguity by subsampling inside the cell.
2) If subsampling is impossible, pick one of the two possibilities.

Marching Squares (2D)

Same machinery: cells → cubes (voxels), lines → triangles

• 256 different cases - 15 after symmetries, 6 ambiguous cases
• More subsampling rules → 33 unique cases

Chernyaev, Marching Cubes 33,’95

the 15 cases

Marching Cubes (3D)

explore ambiguity to avoid holes!

Marching Cubes (3D)

Main Strengths:

• Very multi-purpose.
• Extremely fast and parallelizable.
• Relatively simple to implement.
• Virtually parameter-free

Main Weaknesses:

• Can create badly shaped (skinny) triangles.
• Many special cases (implemented as big lookup tables).
• No sharp features.

Recap: Points→Implicit→Mesh

Next Time: Mesh → Point Cloud!

Software
• Libigl http://libigl.github.io/libigl/tutorial/tutorial.html

• MATLAB-style (flat) C++ library, based on indexed face
set structure

• OpenMesh www.openmesh.org
• Mesh processing, based on half-edge data structure

• CGAL www.cgal.org
• Computational geometry

• MeshLab http://www.meshlab.net/
• Viewing and processing meshes

http://libigl.github.io/libigl/tutorial/tutorial.html
http://www.openmesh.org
http://www.cgal.org
http://www.meshlab.net/

Software
• Alec Jacobson’s GP toolbox

• https://github.com/alecjacobson/gptoolbox
• MATLAB, various mesh and matrix routines

• Gabriel Peyre’s Fast Marching Toolbox
• https://www.mathworks.com/matlabcentral/

fileexchange/6110-toolbox-fast-marching
• On-surface distances (more next time!)

• OpenFlipper https://www.openflipper.org/
• Various GP algorithms + Viewer

https://github.com/alecjacobson/gptoolbox
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://www.openflipper.org/

MESH-> POINT CLOUD
Sampling

From Surface to Point Cloud - Why?
• Points are simple but expressive!

• Few points can suffice
• Flexible, unstructured, few constraints
• Also: ML applications!

CAD meshes:
many components
bad triangles
connectivity problems

From Surface to Point Cloud - Why?
• Points are simple but expressive!

• Few points can suffice
• Flexible, unstructured, few constraints
• Also: ML applications!

the problem:
sampling the mesh

CAD meshes:
many components
bad triangles
connectivity problems

Farthest Point Sampling
• Introduced for progressive transmission/acquisition of images
• Quality of approximation improves with increasing number of

samples
• as opposed eg. to raster scan

• Key Idea: repeatedly place next sample in the middle of the least-
known area of the domain.

Gonzalez 1985, “Clustering to minimize the maximum intercluster distance”
Hochbaum and Shmoys 1985, “A best possible heuristic for the k-center problem”

Pipeline

1.Create an initial sample point set S
• Image corners + additional random point.

2. Find the point which is the farthest from all point in S 
 
 
 
 

3. Insert the point to S and update the distances
4. While more points are needed, iterate

Farthest Point Sampling

• Depends on a notion of distance on the sampling
domain

• Can be made adaptive, via a weighted distance

Eldar et al. 1997, “The Farthest Point Strategy for Progressive Image Sampling”

FPS on surfaces

• What’s an appropriate distance?

On-Surface Distances

• Geodesics: Straightest and locally shortest curves

isolines - euclidean

isolines - geodesic

Discrete Geodesics
• Recall: a mesh is a graph!
• Approximate geodesics as paths along edges

Dijkstra’s
algorithm!

Fast Marching Geodesics

• A better approximation: allow fronts to cross triangles!

Kimmel and Sethian 1997, “Computing Geodesic Paths on Manifolds”

FPS on a Mesh

Peyré and Cohen 2003, Geodesic Remeshing Using Front Propagation

