## UCSanDiego

# Curves: Gauss Map, Turning <br> Number Theorem, Parallel Transport 

Instructor: Hao Su

What do these calculations look like in software?

## Old-School Approach



Piecewise smooth approximations

## Question

## What is the arc length of a cubic Bézier curve?

$$
\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t
$$

## Question

## What is the arc length of a cubic Bézier curve?

$$
\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t
$$

## Sad fact: <br> Closed-form

 expressions rarely exist. When they do exist, they usually are messy.
## Only Approximations Anyway

$\{$ Bézier curves $\} \subsetneq\left\{\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}\right\}$

## Equally Reasonable Approximation



Piecewise linear

## Big Problem



Boring differential structure

## Finite Difference Approach

$$
f^{\prime}(x) \approx \frac{1}{h}[f(x+h)-f(x)]
$$

## THEOREM: As , [insert statement].

## Reality Check

$$
f^{\prime}(x) \approx \frac{1}{h}[f(x+h)-f(x)]
$$

## Two Key Considerations

- Convergence to continuous theory
- Discrete behavior


## Goal

## Examine discrete theories of differentiable curves.

## Goal

## Examine discrete theories of differentiable curves.

## Gauss Map



## Signed Curvature on Plane Curves



## Winding Number

- The total number of times that curve travels counterclockwise around the point.
- The winding number depends on the orientation of the curve, and is negative if the curve travels around the point clockwise.



## Winding Number



## Turning Numbers



## Recovering Theta

$$
\begin{aligned}
\theta^{\prime}(s) & =\kappa(s) \\
& \Downarrow \\
\Delta \theta & =\int_{s_{0}}^{s_{1}} \kappa(s) d s
\end{aligned}
$$

## Turning Number Theorem



## Discrete Gauss Map



## Discrete Gauss Map



## Discrete Gauss Map



Key Observation


## What's Going On?



Total change in curvature

## What's Going On?



Total change in curvature

## What's Going On?



## Interesting Distinction

$$
\kappa_{1} \neq \kappa_{2}
$$



Same integrated curvature

## Interesting Distinction

$$
\kappa_{1} \neq \kappa_{2}
$$



Same integrated curvature

## What's Going On?



Total change in curvature

## Discrete Turning Angle Theorem



## Alternative Definition

## $-\kappa N$ <br> decreases <br> length the fastest.

## Remaining Question

## Does discrete curvature converge in limit?

## Remaining Question

## Questions:

- Type of convergence?
- Sampling?
- Class of curves?


## Does discrete curvature converge in limit?

## Discrete Differential Geometry

- Different discrete behavior
- Same convergence


## Next



## Curves in 3D

## Frenet Frame



## Potential Discretization

$$
\begin{aligned}
& T_{j}=\frac{p_{j+1}-p_{j}}{\left\|p_{j+1}-p_{j}\right\|} \\
& B_{j}=t_{j-1} \times t_{j} \\
& N_{j}=b_{j} \times t_{j} \\
& \text { Discrete Frenet frame }
\end{aligned}
$$

Discrete frame introduced in:
The resultant electric moment of complex molecules
Eyring, Physical Review, 39(4):746-748, 1932.

## Transfer Matrix

$$
\left(\begin{array}{c}
T_{i+1} \\
N_{i+1} \\
B_{i+1}
\end{array}\right)=R_{i+1, i}\left(\begin{array}{c}
T_{i} \\
N_{i} \\
B_{i}
\end{array}\right)
$$



Discrete construction that works for fractal curves and converges in continuum limit.

Discrete Frenet Frame, Inflection Point Solitons, and Curve Visualization with Applications to Folded Proteins

Hu, Lundgren, and Niemi<br>Physical Review E 83 (201I)

## Segments Not Always Enough



## Simulation Goal



## Adapted Framed Curve



## Bending Energy

$$
E_{\mathrm{bend}}(\Gamma):=\frac{1}{2} \int_{\Gamma} \alpha \kappa^{2} d s
$$

## Punish turning the steering wheel

$$
\begin{aligned}
\kappa N & =T^{\prime} \\
& =\left(T^{\prime} \cdot T\right) T+\left(T^{\prime} \cdot m_{1}\right) m_{1}+\left(T^{\prime} \cdot m_{2}\right) m_{2} \\
& =\left(T^{\prime} \cdot m_{1}\right) m_{1}+\left(T^{\prime} \cdot m_{2}\right) m_{2} \\
& :=\omega_{1} m_{1}+\omega_{2} m_{2}
\end{aligned}
$$

## Bending Energy

$E_{\mathrm{bend}}(\Gamma):=\frac{1}{2} \int_{\Gamma} \alpha\left(\omega_{1}^{2}+\omega_{2}^{2}\right) d s$
Punish turning the steering wheel

$$
\begin{aligned}
\kappa N & =T^{\prime} \\
& =\left(T^{\prime} \cdot T\right) T+\left(T^{\prime} \cdot m_{1}\right) m_{1}+\left(T^{\prime} \cdot m_{2}\right) m_{2} \\
& =\left(T^{\prime} \cdot m_{1}\right) m_{1}+\left(T^{\prime} \cdot m_{2}\right) m_{2} \\
& :=\omega_{1} m_{1}+\omega_{2} m_{2}
\end{aligned}
$$

## Twisting Energy

$$
E_{\mathrm{twist}}(\Gamma):=\frac{1}{2} \int_{\Gamma} \beta m^{2} d s
$$

Punish non-tangent change in material frame

$$
\begin{aligned}
m & :=m_{1}^{\prime} \cdot m_{2} \\
& =\frac{d}{d t}\left(m_{1} \cdot m_{2}\right)-m_{1} \cdot m_{2}^{\prime} \\
& =-m_{1} \cdot m_{2}^{\prime}
\end{aligned}
$$

## Twisting Energy

$$
E_{\mathrm{twist}}(\Gamma):=\frac{1}{2} \int_{\Gamma} \beta m^{2} d s
$$

Punish non-tangent change in material frame

$$
\begin{aligned}
m & :=m_{1}^{\prime} \cdot m_{2} \\
& =\frac{d}{d t}\left(m_{1} \cdot m_{2}\right)-m_{1} \cdot m_{2}^{\prime} \\
& =-m_{1} \cdot m_{2}^{\prime} \longleftarrow \quad \text { Swapping and does not }
\end{aligned}
$$

## Which Basis to Use

## THERE IS MORE THAN ONE WAY TO FRAME A CURVE

RICHARD L. BISHOP

The Frenet frame of a 3-times continuously differentiable (that is, $C^{3}$ ) nondegenerate curve in euclidean space has long been the standard vehicle for analysing properties of the curve invariant under euclidean motions. For arbitrary moving frames, that is, orthonormal basis fields, we can express the derivatives of the frame with respect to the curve parameter in terms of the frame itself, and due to orthonormality the coefficient matrix is always skew-symmetric. Thus it generally has three nonzero entries. The Frenet frame gains part of its special significance from the fact that one of the three derivatives is always zero. Another feature of the Frenet frame is that it is adapted to the curve: the members are either tangent to or perpendicular to the curve. It is the purpose of this paper to show that there are other frames which have these same advantages and to compare them with the Frenet frame.

1. Relatively parallel fields. We say that a normal vector field $M$ along a curve is relatively parallel if its derivative is tangential. Such a field turns only whatever amount is necessary for it to remain normal, so it is as close to being parallel as possible without losing normality. Since its derivative is perpendicular to it, a relatively parallel normal field has constant length. Such fields occur classically in

## Frenet Frame: Issue



## Cross Product as Matrix Multiplication

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\mathbf{a}_{x}\right] \mathbf{b}
$$

$$
\left[a_{\mathrm{x}}\right]=-\left[a_{\mathrm{x}}\right]^{T}
$$

"skew-symmetric matrix"

## Darboux Vector of Frenet Frame

In terms of the Frenet-Serret apparatus, the Darboux vector $\omega$ can be expressed as ${ }^{[3]}$

$$
\begin{equation*}
\Omega=\tau \mathbf{T}+\kappa \mathbf{B} \tag{1}
\end{equation*}
$$

and it has the following symmetrical properties:[2]

$$
\begin{aligned}
& \Omega \times \mathbf{T}=\mathbf{T}^{\prime}, \\
& \Omega \times \mathbf{N}=\mathbf{N}^{\prime} \\
& \Omega \times \mathbf{B}=\mathbf{B}^{\prime},
\end{aligned}
$$

which can be derived from Equation (1) by means of the Frenet-Serret theorem (or vice versa).

## Bishop Frame and its Darboux Vector

$$
\begin{aligned}
T^{\prime} & =\Omega \times T \\
u^{\prime} & =\Omega \times u \\
v^{\prime} & =\Omega \times v
\end{aligned}
$$

$$
\Omega:=\kappa B(\text { "curvature binormal") }
$$

Darboux vector

Most relaxed frame

## Bishop Frame

$$
\begin{array}{rr}
T^{\prime} & =\Omega \times T \\
u^{\prime} & =\Omega \times u \\
v^{\prime} & =\Omega \times v \\
\Omega & =\kappa B(\text { "curvature binormal") } \\
\text { ("paralle transport") }
\end{array}
$$

## Curve-Angle Representation

$$
\begin{gathered}
m_{1}=u \cos \theta+v \sin \theta \\
m_{2}=-u \sin \theta+v \cos \theta \\
E_{\text {twist }}(\Gamma):=\frac{1}{2} \int_{\Gamma} \beta\left(\theta^{\prime}\right)^{2} d s
\end{gathered}
$$

Degrees of freedom for elastic energy:
Shape of curve Twist angle

## Discrete Kirchoff Rods



Upper index: dual

## Discrete Kirchoff Rods



$$
T^{i}:=\frac{e^{i}}{\left\|e^{i}\right\|}
$$

Tangent unambiguous on edge

## Discrete Kirchoff Rods


$K_{i}:=2 t a n \frac{\phi_{i}}{2}$ Integrated curvature

## Discrete Kirchoff Rods

$$
\begin{aligned}
& {\underset{x}{0}}^{2} \quad \mathrm{x}_{1} \quad e^{1} \longrightarrow e^{2}{\underset{x}{3}}_{x_{2}}^{x_{3}} \\
& \kappa_{i}:=2 \tan \frac{\phi_{i}}{2} \quad \begin{array}{c}
(\kappa B)_{i}:=\frac{2 e^{i-1} \times e^{i}}{\left\|e^{i-1}\right\|\left\|e^{i}\right\|+e^{i-1} \cdot e^{i}} \\
\text { Orthogonal to osculating plane, norm }
\end{array}
\end{aligned}
$$

Yet another curvature!

## Darboux vector

## Bending Energy

$$
E_{\mathrm{bend}}(\Gamma):=\frac{\alpha}{2} \sum_{i}\left(\frac{(\kappa B)_{i}}{\ell_{i} / 2}\right)^{2} \frac{\ell_{i}}{2}
$$

$$
=\alpha \sum_{i} \frac{\left\|(\kappa B)_{i}\right\|^{2}}{\ell_{i}}
$$

## Discrete Parallel Transport

- Map tangent to tangent
- Preserve binormal
- Orthogonal

$$
P_{i}\left(T^{i-1}\right)=T^{i}
$$

$$
P_{i}\left(T^{i-1} \times T^{i}\right)=T^{i-1} \times T^{i}
$$

$$
u^{i}=P_{i}\left(u^{i-1}\right)
$$

$$
v^{i}=T^{i} \times u^{i}
$$



## Discrete Material Frame

$$
\begin{aligned}
& m_{1}^{i}=u^{i} \cos \theta^{i}+v^{i} \sin \theta^{i} \\
& m_{2}^{i}=-u^{i} \sin \theta^{i}+v^{i} \cos \theta^{i}
\end{aligned}
$$



## Discrete Twisting Energy

$$
E_{\mathrm{twist}}(\Gamma):=\beta \sum_{i} \frac{\left(\theta^{i}-\theta^{i-1}\right)^{2}}{\ell_{i}}
$$

Note can be arbitrary

## Simulation

\omit\{physics\}

> Worth reading!

## Extension and Speedup

## Discrete Viscous Threads

Miklós Bergou<br>Columbia University

Basile Audoly<br>UPMC Univ. Paris 06 \& CNRS

Etienne Vouga<br>Columbia University

Eitan Grinspun Columbia University


## Extension and Speedup

## Discrete Viscous Threads

Miklós Bergou<br>Columbia University

Basile Audoly
UPMC Univ. Paris 06 \& CNRS

Etienne Vouga<br>Columbia University

Eitan Grinspun Columbia University


## Morals

## One curve, three curvatures.

## $\theta$ <br> $2 \sin \frac{\theta}{2}$ <br> $2 \tan \frac{}{2}$

## Morals

## Easy theoretical object, hard <br> to use.

$$
\frac{d}{d s}\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right)
$$

## Morals

## Proper frames and DOFs go <br> a long way.

$m_{1}^{i}=u^{i} \cos \theta^{i}+v^{i} \sin \theta^{i}$
$m_{2}^{i}=-u^{i} \sin \theta^{i}+v^{i} \cos \theta^{i}$

http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg http://www.stat.washington.edu/wxs/images/BUNMID.gif

## Surfaces

