

Curves: Gauss Map, Turning Number Theorem, Parallel Transport

Instructor: Hao Su

Credit: Justin Solomon

What do these calculations look like in software?

Old-School Approach

Piecewise smooth approximations

Question

What is the arc length of a cubic Bézier curve?

$$\int_{a}^{b} \|\gamma'(t)\| \, dt$$

Question

What is the arc length of a cubic Bézier curve?

$$\int_{a}^{b} \|\gamma'(t)\| \, dt$$

Not known in closed form.

Sad fact: Closed-form expressions rarely exist. When they do exist, they usually are messy.

Only Approximations Anyway

$\{\text{Bézier curves}\} \subsetneq \{\gamma : \mathbb{R} \to \mathbb{R}^3\}$

Equally Reasonable Approximation

Piecewise linear

Big Problem

Boring differential structure

Finite Difference Approach

$$f'(x) \approx \frac{1}{h} [f(x+h) - f(x)]$$

THEOREM: As, [insert statement].

Reality Check

Two Key Considerations

- Convergence to continuous theory
- Discrete behavior

Examine discrete theories of differentiable curves.

Examine discrete theor<u>ies</u> of differentiable curves.

Gauss Map

Signed Curvature on Plane Curves

Winding Number

- The total number of times that curve travels counterclockwise around the point.
- The winding number depends on the orientation of the curve, and is negative if the curve travels around the point clockwise.

Winding Number

Turning Numbers

Recovering Theta

Turning Number Theorem

A "global" theorem!

Discrete Gauss Map

Discrete Gauss Map

Discrete Gauss Map

Key Observation

Ĥ

Total change in curvature

Interesting Distinction

Same integrated curvature

Interesting Distinction

 $\kappa_1 \neq \kappa_2$

Same integrated curvature

Discrete Turning Angle Theorem

Alternative Definition

 $-\kappa N$ decreases length the fastest.

Remaining Question

Does discrete curvature converge in limit?

Yes!

Remaining Question

Questions:

- Type of convergence?
- Sampling?
- Class of curves?

Does discrete curvature converge in limit?

Yes!

Discrete Differential Geometry

• Different discrete behavior

• Same convergence

Next

http://www.grasshopper3d.com/forum/topics/offseting-3d-curves-component

Curves in 3D

Frenet Frame

Potential Discretization

$$T_{j} = \frac{p_{j+1} - p_{j}}{\|p_{j+1} - p_{j}\|}$$
$$B_{j} = t_{j-1} \times t_{j}$$
$$N_{j} = b_{j} \times t_{j}$$
Discrete Frenet frame

Discrete frame introduced in: **The resultant electric moment of complex molecules** Eyring, Physical Review, 39(4):746—748, 1932.

Transfer Matrix

$$\begin{pmatrix} T_{i+1} \\ N_{i+1} \\ B_{i+1} \end{pmatrix} = R_{i+1,i} \begin{pmatrix} T_i \\ N_i \\ B_i \end{pmatrix}$$

Discrete construction that works for fractal curves and converges in continuum limit.

Discrete Frenet Frame, Inflection Point Solitons, and Curve Visualization with Applications to Folded Proteins Hu, Lundgren, and Niemi Physical Review E 83 (2011)

Segments Not Always Enough

http://www.cs.columbia.edu/cg/rods/

Simulation Goal

Adapted Framed Curve

http://www.cs.columbia.edu/cg/rods/

Normal part encodes twist

Bending Energy

$$E_{\text{bend}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \alpha \kappa^2 \, ds$$

Punish turning the steering wheel

$$\kappa N = T'$$

= $(T' \cdot T)T + (T' \cdot m_1)m_1 + (T' \cdot m_2)m_2$
= $(T' \cdot m_1)m_1 + (T' \cdot m_2)m_2$

 $:= \omega_1 m_1 + \omega_2 m_2$

Bending Energy

$$E_{\text{bend}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \alpha(\omega_1^2 + \omega_2^2) \, ds$$

Punish turning the steering wheel

$$\kappa N = T'$$

= $(T' \cdot T)T + (T' \cdot m_1)m_1 + (T' \cdot m_2)m_2$
= $(T' \cdot m_1)m_1 + (T' \cdot m_2)m_2$

 $:= \omega_1 m_1 + \omega_2 m_2$

Twisting Energy

$$E_{\text{twist}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \beta m^2 \, ds$$

Punish non-tangent change in material frame

$$m := m'_1 \cdot m_2$$

= $\frac{d}{dt}(m_1 \cdot m_2) - m_1 \cdot m'_2$
= $-m_1 \cdot m'_2$

Twisting Energy

$$E_{\text{twist}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \beta m^2 \, ds$$

Punish non-tangent change in material frame

$$m := m'_1 \cdot m_2$$

= $\frac{d}{dt}(m_1 \cdot m_2) - m_1 \cdot m'_2$
= $-m_1 \cdot m'_2$ Swapping and does not affect !

Which Basis to Use

THERE IS MORE THAN ONE WAY TO FRAME A CURVE

RICHARD L. BISHOP

The Frenet frame of a 3-times continuously differentiable (that is, C^3) nondegenerate curve in euclidean space has long been the standard vehicle for analysing properties of the curve invariant under euclidean motions. For arbitrary moving frames, that is, orthonormal basis fields, we can express the derivatives of the frame with respect to the curve parameter in terms of the frame itself, and due to orthonormality the coefficient matrix is always skew-symmetric. Thus it generally has three nonzero entries. The Frenet frame gains part of its special significance from the fact that one of the three derivatives is always zero. Another feature of the Frenet frame is that it is *adapted* to the curve: the members are either tangent to or perpendicular to the curve. It is the purpose of this paper to show that there are other frames which have these same advantages and to compare them with the Frenet frame.

1. Relatively parallel fields. We say that a normal vector field M along a curve is relatively parallel if its derivative is tangential. Such a field turns only whatever amount is necessary for it to remain normal, so it is as close to being parallel as possible without losing normality. Since its derivative is perpendicular to it, a relatively parallel normal field has constant length. Such fields occur classically in

Frenet Frame: Issue

Cross Product as Matrix Multiplication

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a}_{\times}]\mathbf{b}$$

$$\left[a_{\mathsf{X}}\right] = -\left[a_{\mathsf{X}}\right]^{T}$$

"skew-symmetric matrix"

Darboux Vector of Frenet Frame

In terms of the Frenet-Serret apparatus, the Darboux vector $\boldsymbol{\omega}$ can be expressed as^[3]

 $\Omega = \tau \mathbf{T} + \kappa \mathbf{B} \tag{1}$

and it has the following symmetrical properties:^[2]

which can be derived from Equation (1) by means of the Frenet-Serret theorem (or vice versa).

Bishop Frame and its Darboux Vector

 $\Omega := \kappa B (\text{``curvature binormal''})$ Darboux vector

http://www.cs.columbia.edu/cg/rods/

Most relaxed frame

Bishop Frame

 $T' = \Omega \times T$ $u' = \Omega \times u$ $v' = \Omega \times v$ $O = D \quad (``u' = u' \cdot v \equiv 0$ No twist
("parallel transport")

 $\Omega := \kappa B (\text{``curvature binormal''})$

http://www.cs.columbia.edu/cg/rods/

Most relaxed frame

Curve-Angle Representation

$$m_1 = u\cos\theta + v\sin\theta$$
$$m_2 = -u\sin\theta + v\cos\theta$$

$$E_{\text{twist}}(\Gamma) := \frac{1}{2} \int_{\Gamma} \beta(\theta')^2 \, ds$$

Degrees of freedom for elastic energy: Shape of curve Twist angle

•

Tangent unambiguous on edge

Yet another curvature!

Integrated curvature

$$\kappa_i := 2 \tan \frac{\phi_i}{2}$$

$$(\kappa B)_i := \frac{2e^{i-1} \times e^i}{\|e^{i-1}\| \|e^i\| + e^{i-1} \cdot e^i}$$

Orthogonal to osculating plane, norm

Yet another curvature!

Darboux vector

Bending Energy

$$\begin{split} E_{\text{bend}}(\Gamma) &:= \frac{\alpha}{2} \sum_{i} \left(\frac{(\kappa B)_i}{\ell_i/2} \right)^2 \frac{\ell_i}{2} \\ &= \alpha \sum_{i} \frac{\|(\kappa B)_i\|^2}{\ell_i} \\ \end{split}$$

Convert to pointwise and integrate

Discrete Parallel Transport

- Map tangent to tangent
- Preserve binormal
- Orthogonal

Discrete Material Frame

Discrete Twisting Energy

$E_{\text{twist}}(\Gamma) := \beta \sum_{i} \frac{(\theta^{i} - \theta^{i-1})^{2}}{\ell_{i}}$ Note can be arbitrary

Simulation

\omit{physics} Worth reading!

Extension and Speedup

Extension and Speedup

One curve, three curvatures.

 $2\sin\frac{\theta}{2}$ $2 \tan \frac{\theta}{2}$

Morals

Easy theoretical object, hard to use.

Morals

Proper frames and DOFs go a long way.

$$m_1^i = u^i \cos \theta^i + v^i \sin \theta^i$$
$$m_2^i = -u^i \sin \theta^i + v^i \cos \theta^i$$

Next

http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg http://www.stat.washington.edu/wxs/images/BUNMID.gif

