UCSanDiego

Geometry Meets Machine Learning

Instructor: Hao Su

Rough Plan

- Linear problems
- Unconstrained optimization
- Equality-constrained optimization

Unconstrained Optimization

Basic Algorithms

Basic Algorithms

$$
\begin{aligned}
& \lambda_{0}=0, \lambda_{s}=\frac{1}{2}\left(1+\sqrt{1+4 \lambda_{s-1}^{2}}\right), \gamma_{s}=\frac{1-\lambda_{2}}{\lambda_{s+1}} \\
& y_{s+1}=x_{s}-\frac{1}{\beta} \nabla f\left(x_{s}\right) \\
& x_{s+1}=\left(1-\gamma_{s}\right) y_{s+1}+\gamma_{s} y_{s}
\end{aligned}
$$

Inverse quadratic convergence on convex problems!

 (Nesterov I 983)$$
f(X(t))-f^{\star} \leq O\left(\frac{\left\|x_{0}-x^{\star}\right\|^{2}}{t^{2}}\right)
$$

Accelerated gradient descent

Basic Algorithms

$$
x_{k+1}=x_{k}-\left[H f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)
$$

Basic Algorithms

- (Often sparse) approximation from previous samples and gradients
- Inverse in closed form!

$$
x_{k+1}=x_{k}-{\underset{\sim}{\uparrow}}_{\substack{\text { Hessian } \\ \text { approximation }}}^{-1} \nabla f\left(x_{k}\right)
$$

Example: Shape Interpolation

Figure 5: Interpolation and extrapolation of the yellow example poses. The blending weights are $0,0.35,0.65,1.0$, and 1.25 .

Figure 6: Interpolation of an adaptively meshed and strongly twisted helix with blending weights $0,0.25,0.5,0.75,1.0$.
Fröhlich and Botsch. "Example-Driven Deformations Based on Discrete Shells." CGF 201 I.

Interpolation Pipeline

Roughly:

I. Linearly interpolate edge lengths and dihedral angles.

$$
\begin{aligned}
& \ell_{e}^{*}=(1-t) \ell_{e}^{0}+t \ell_{e}^{1} \\
& \theta_{e}^{*}=(1-t) \theta_{e}^{0}+t \theta_{e}^{1}
\end{aligned}
$$

2. Nonlinear optimization for vertex positions.

$$
\min _{x_{1}, \ldots, x_{m}} \lambda \sum_{e} w_{e}\left(\ell_{e}(x)-\ell_{e}^{*}\right)^{2}
$$

$$
+\mu \sum_{e} w_{b}\left(\theta_{e}(x)-\theta_{e}^{*}\right)^{2}
$$

Software

- Matlab: fminunc or minfunc
- C++: libLBFGS, dlib, others

Typically provide functions for function and gradient (and optionally, Hessian).

Try several!

Some Tricks

$$
\begin{aligned}
& \text { Lots of small elements: }\|x\|_{2}^{2}=\sum_{i} x_{i}^{2} \\
& \text { Lots of zeros: }\|x\|_{1}=\sum_{i}\left|x_{i}\right|
\end{aligned}
$$

$$
\text { Uniform norm: }\|x\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

$$
\text { Low rank: }\|X\|_{*}=\sum_{i} \sigma_{i}
$$

Mostly zero columns: $\|X\|_{2,1}=\sum_{j} \sqrt{\sum_{i} x_{i j}^{2}}$ Smooth: $\int\|\nabla f\|_{2}^{2}$
Piecewise constant: $\int\|\nabla f\|_{2}$???: Early stopping

Regularization

Some Tricks

Original

Blurred

Multiscale/graduated optimization

Rough Plan

- Linear problems
- Unconstrained optimization
- Equality-constrained optimization

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Example: Symmetric Eigenvectors

$$
\begin{aligned}
f(x) & =x^{\top} A x \\
g(x) & =\|x\|_{2}^{2} \Longrightarrow \nabla f(x)=2 A x \\
& \Longrightarrow A x(x)=2 x \\
& \Longrightarrow A x
\end{aligned}
$$

Use of Lagrange Multipliers

Turns constrained optimization into unconstrained root-finding.

$$
\begin{aligned}
\nabla f(x) & =\lambda \nabla g(x) \\
g(x) & =0
\end{aligned}
$$

Many Options

- Reparameterization

Eliminate constraints to reduce to unconstrained case

- Newton's method

Approximation: quadratic function with linear constraint

- Penalty method

Augment objective with barrier term, e.g. $f(x)+\rho|g(x)|$

Trust Region Methods

Asideronvex Optimization Tools

Try lightweight options

Alternating Projection

\mathcal{C}_{1}
\mathcal{C}_{2}
d can be a
Bregman divergence

Augmented Lagrangians

$$
\begin{array}{rl}
\min _{x} & f(x) \\
\text { s.t. } & g(x)=0
\end{array}
$$

$$
\downarrow
$$

$\min _{x} \quad f(x)+\frac{\rho}{2}\|g(x)\|_{2}^{2}$ constraint is satisfied
s.t. $g(x)=0$

Add constraint to objective

Alternating Direction Method of Multipliers (ADMM)

$$
\begin{gathered}
\min _{x, z} \quad f(x)+g(z) \\
\text { s.t. } \quad A x+B z=c \\
\Lambda_{\rho}(x, z ; \lambda)=f(x)+g(z)+\lambda^{\top}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2} \\
x \leftarrow \arg \min _{x} \Lambda_{\rho}(x, z, \lambda) \\
z \leftarrow \arg \min _{z} \Lambda_{\rho}(x, z, \lambda) \\
\lambda \leftarrow \lambda+\rho(A x+B z-c)
\end{gathered}
$$

