UCSan Diego

Geometry Meets
Machine Learning

Instructor: Hao Su



Syllabus

- Course website
» http://geoml.github.io
* Five units
- Geometry Basics
- Laplacian Operator and Spectral Graph Theory
- Data Embedding and Deep Learning
« Map Networks
* Deep Learning on 3D Data



http://geoml.github.io

Who we are?

Instructor: Hao Su Teaching Assistant: Meng Song




Logistics

Grading (tentative)
* Quizzes 20%
« Course project presentation 40%
« Course project writeup 40%
* There will not be a final exam.



Pre-requisite
 Try to be as self-contained as possible
* Proficiency in Python and Matlab
 Calculus, Linear Algebra
* Machine learning

» Classification
» Optimization



UCSan Diego

Numerical Tools
for Geometry



Motivation

Numerical problems abound
in modern geometry applications.

Quick summary!
Mostly for common ground: You may already know this material.
First half is important; remainder summarizes interesting recent tools.



Two Roles

*Client

Which optimization tool is relevant?

*Designer

Can | design an algorithm for this problem?
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Numerical analysis is a huge field.



Rough Plan

- Linear problems
» Unconstrained optimization

 Equality-constrained optimization



Rough Plan

» Linear problems
» Unconstrained optimization

 Equality-constrained optimization



Vector Spaces and Linear Operators

L|\T+y] = L|Z]+ Ly
LlcZ] = cL[7]



Abstract Example

C*(R)
LIf) = &/




In Finite Dimensions
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Linear System of Equations

A T | =

Simple “inverse problem”

Sop



Common Strategies

e Gaussian elimination

O(n3) time to solve Ax=Db or to invert

e But: Inversion Is unstable and slower!

* Never ever compute A-! if you can avoid it.



Interesting Perspective
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Simple Example
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Structure?



Linear Solver Considerations

* Never construct explicitly
(if you can avoid it)

* Added structure helps
Sparsity, symmetry, positive definiteness, bandedness

inv(A)*b < (A’*A)\ (A’xb) < A\Db



Two Classes of Solvers

* Direct (explicit matrix)
Dense: Gaussian elimination/LU, QR for least-squares
Sparse: Reordering (SuiteSparse, Eigen)

o Iterative (apply matrix repeatedly)
Positive definite: Conjugate gradients

Symmetric: MINRES, GMRES
Generic: LSOR



Very Common
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Rough Plan

- Linear problems
* Unconstrained optimization

 Equality-constrained optimization



Optimization Terminology

min:L‘GR” f(ilf)
s.t.g(x) =0
h(xz) > 0

Objective (“Energy Function”)



Optimization Terminology

HliIla; clR™ f ($)

s.t. g(x)

0
h(xz) > 0

VAR

Equality Constraints



Optimization Terminology

HliIla; clR™ f ($)

s.t. g(x)

0
h(xz) > 0

'\

Inequality Constraints



Notions from Calculus
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Notions from Calculus

f:R" —R™

— (Df)ij = o

(933]'

https://en.wikipedia.org/wiki/Jacobian_matr

Jacobian

ix_and_determinant



Notions from Calculus

f(x) = f(zo) + Vf(zo) ' (x —z0) + (z — z0) " H f(20)(z — o)
http://math.etsu.edu/multicalc/prealpha/Chap2/Chap2-5/10-3a-t3.gif

Hessian



Optimization to Root-Finding

Vfi(r)=0

(unconstrained)

Saddle point

L ocal max

Local min

Critical point



Encapsulates Many Problems

mianR“ f (Z)

Ar=Ar < f(z)=|[|Az]]2, g(z)=||z]2 -1

Roots of g(x) < f(z) =0



How effective are
generic
optimization tools?



Generic Advice

Try the
simplest solver first.



Quadratic with Linear Equality

min,, %xTAx —b'x

s.t. Mx=v

(assume A is symmetric and positive definite)

A M' X
M 0 A



Useful Document

The Matrix Cookbook

Petersen and Pedersen

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274 .pdf



Special Case: Least-Squares

1
min 5 | Az — b||5

1
— min §xTATAx —b" Az + ||b]|3

— A" Az =A"b

Normal equations
(better solvers for this case!)



Example: Mesh Embedding
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G. Peyré, mesh processing course slides



Linear Solve for Embedding

Wil oy 2gg)er WiillZi = 23
s.t. =z, fixed Vv € V]

* w; = 1: Tutte embedding
- w; from mesh: Harmonic embedding

Assumption: symmetric.



Returning to Parameterization

Wil oy 2gg)er WiillZi = 23
s.t. =z, fixed Vv € V]

What if
Vo ={}?




Nontriviality Constraint

{ ming || Azl } — A Az = M\

S.t. ZL‘HQ — 1

Prevents trivial solution x = 0.

Extract the smallest eigenvalue.



Basic Idea of Eigenalgorithms
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