
Continuous Laplacian,
Functional Map, Spectral CNN

Instructor: Hao Su



CONTINUOUS LAPLACIAN-BERTRAMI 
OPERATOR



Planar Region

Heat equation:

∂f
∂t

= − Δf

Δ := ∑
i

∂2

∂x2
i



Typical Notation

Gradient operator:

divergence
gradient

http://www.gamasutra.com/db_area/images/feature/4164/figy.png, https://en.wikipedia.org/wiki/Gradient

More 
later…



Divergence Operator

The divergence at a point x is the limit of the ratio of the 
flux  through the surface Si (red arrows) to the volume  for any 
sequence of closed regions V1, V2, V3... enclosing x that 

approaches zero volume:  ∇ ⋅ F = lim
|Vi|→0

Φ(Si)
|Vi |



Positivity, Self-Adjointness

On board:
1. Positive: 

2. Self-adjoint:

“Dirichlet boundary conditions”



Proof

⟨ f, ℒ[ f ]⟩ = ∫Ω
f ( − ∇ ⋅ ∇f ) dV = ∫∂Ω

f ( − ∇f ⋅ ⃗n ) dS + ∫Ω
∇f ⋅ ∇f dV = ∫Ω

∇f ⋅ ∇f dV ≥ 0

⟨ f, ℒ[g]⟩ = ∫Ω
f ( − ∇ ⋅ ∇g) dV = ∫∂Ω

f ( − ∇g ⋅ ⃗n ) dS + ∫Ω
∇f ⋅ ∇g dV = ∫Ω

∇f ⋅ ∇g dV

where the second equality follows from Green formula, and the third equality follows 
from  f |∂Ω ≡ 0

where the second equality follows from Green formula, and the third equality follows 
from  f |∂Ω ≡ 0

⟨ℒ[ f ], g⟩ = ∫Ω
∇g ⋅ ∇f dVSimilarly,

It also shows ⟨ f, ℒ[g]⟩ = ∫Ω
∇f ⋅ ∇g dV

Proof of 1

Proof of 2



Dirichlet Energy

On board:

“Laplace equation”
“Harmonic function”

Images made by E. Vouga



Proof

𝕃[ f ] =
1
2 ∫ ⟨∇f, ∇f ⟩ + ∫∂Ω

λ(x)( f (x) − g(x))

We use variational method to derive.

Lagrangian:

So

δ𝕃[ f ] = 𝕃[ f + δh] − 𝕃[ f ] = ∫Ω
⟨∇f, ∇δh⟩ + ∫∂Ω

λ(x)δh(x) = ∫∂Ω
δh(∇f ⋅ ⃗n ) − ∫Ω

δh(∇ ⋅ ∇f ) + ∫∂Ω
λ(x)δh(x)

In the interior of     , Ω Δf ≡ 0 so that                    for any  δ𝕃[ f ] = 0 δh



Harmonic Functions

Images made by E. Vouga



Scalar Functions

http://www.ieeta.pt/polymeco/Screenshots/PolyMeCo_OneView.jpg

Map points to real numbers

Recall:



Gradient Vector Field

Following Curves and Surfaces, Montiel & Ros



Dirichlet Energy

Images made by E. Vouga

Decreasing E



What is Divergence?

Things we should check (but probably won’t):
• Independent of choice of basis



Eigenfunctions

http://alice.loria.fr/publications/papers/2008/ManifoldHarmonics//photo/dragon_mhb.png

Vibration modes of 

surface (not volume!)



Nodal Domains

Theorem (Courant).  The n-th eigenfunction of 
the Dirichlet boundary value problem has at 
most n nodal domains.

https://en.wikipedia.org/wiki/Ernst_Chladni



Practical Application

• Wave Equation: 

https://www.youtube.com/watch?v=3uMZzVvnSiU

https://www.youtube.com/watch?v=3uMZzVvnSiU


FUNCTIONAL MAP



Maps

Map from X to Y



Maps and Correspondences

• Multiscale 
mappings
• Point/pixel level
• part level

Maps capture what 
is the same or similar  
across two data sets



A Dual View: Functions and Operators

• Functions on data
• Properties, attributes, descriptors, part indicators, etc.

• Operators on functions
• Maps of functions to functions

• Laplace-Beltrami operator on a manifold 

heat diffusion

Laplace Beltrami eigenfunctions

Curvature Parts



Starting from a Regular Map φ

φ: lion → cat



Attribute Transfer via Pull-Back

Tφ: cat → lion



Functions on cat are transferred to lion using Tφ Tφ is a linear operator (matrix)

from cat to lion



Functional Map

Dual of a  
point-to-point map



Bases for a Function Space

Point basis 
Finite-element basis

Local bases



Bases for a Function Space

Fourier

Laplace-Beltrami global support



More Exotic Bases Possible

Textons, wavelets, …



Functional Map: Define Maps Across Objects by 
Relating Basis by a Linear Matrix (Operator)



Functional Map: Define Maps Across Objects by 
Relating Basis by a Linear Matrix (Operator)

Enough to know these



Functional Map Matrix

31



Maps as Linear Operators

• An ordinary shape map lifts to a linear operator mapping 
the function spaces

• With a truncated hierarchical basis, compact 
representations of functional maps are possible as 
ordinary matrices

• Map composition becomes ordinary matrix multiplication
• Functional maps can express many-to-many 

associations, generalizing classical 1-1 maps

Using truncated 
Laplace-Beltrami 
basis



Estimating the Mapping Matrix

Suppose we don’t know C. However, we expect a pair of 
functions   and     to correspond. Then, C 
must be s.t.

where

Given enough          pairs in correspondence, we can 
recover C through a linear least squares system.   



SPECTRAL NEURAL NETWORKS



Fourier analysis

from Jonathan Masci et al

Euclidean domain non Euclidean domain



Convolution Theorem in Euclidean domain

from Jonathan Masci et al



Convolution Theorem in Euclidean domain



Convolution Theorem in non Euclidean domain

from Jonathan Masci et al



Convolution Theorem in non Euclidean domain

modified from Jonathan Masci et al



Convolution Theorem in non Euclidean domain

modified from Jonathan Masci et al

directly design 
convolu3on kernel in 
the spectral domain



Spectral CNN

Joan Bruna et al.  2013

• Observation:
In Fourier analysis, smoothness and sparsity are 
dual notions



Spectral CNN

Joan Bruna et al.  2013

• Use smooth interpolation kernels (spline, polynomial, 
heat kernel, etc.) to parameterize the filters 

spatially locally 
concentrated 



Spectral CNN

Joan Bruna et al.  2013

• Use smooth interpolation kernels (spline, polynomial, 
heat kernel, etc.) to parameterize the filters 

control 
#parameterspatially locally 

concentrated 



Spectral Dilated Convolution
• Parameterize filters with interpolation kernels.
• Shrink kernel bandwidth to increase spatial support of 

filters

Li Yi et al.  2017



Cross Domain Discrepancy
• Parameterize filters with interpolation kernels.
• Shrink kernel bandwidth to increase spatial support of 

filters

Li Yi et al.  2017

Spectral Domain 1� Spectral Domain 2�

Spectral domain is 
independent�y defined for 

each shape graph 

�he same spectral function would 
induce very different spatial 
functions on different graphs 

Cross domain parameter sharing 
is not valid 



Functional Map for Domain Synchronization

Functional Map C1� Functional Map C2�

Li Yi et al.  2017



Synchronization Visualization

Li Yi et al.  2017



Li Yi et al.  2017

SyncSpecCNN



Li Yi et al.  2017

SyncSpecCNN

part 
segmentation

key point 
prediction



SPHERICAL CNN (A SPECTIAL CASE OF 
SPECTRAL CNN)



• If the surface is always a SPHERE, no worry about 
the functional space alignment anymore

• Generate a spherical representation

• Do Spectral CNN
• Has numerical tricks exploiting the symmetry of 

sphere

A Special Case: Spherical CNN

input
spherical 

representation

Cohen et al., “Spherical CNN”, ICLR 2018
Esteves et al., “Learning SO(3) Equivariant Representations with 
Spherical CNNs”, ECCV 2018


