

Continuous Laplacian, Functional Map, Spectral CNN

Instructor: Hao Su

CONTINUOUS LAPLACIAN-BERTRAMI OPERATOR

Planar Region

Typical Notation

http://www.gamasutra.com/db_area/images/feature/4164/figy.png, https://en.wikipedia.org/wiki/Gradient

Divergence Operator

The divergence at a point **x** is the limit of the ratio of the flux through the surface S_i (*red arrows*) to the volume for any sequence of closed regions V₁, V₂, V₃... enclosing **x** that approaches zero volume: $\nabla \cdot F = \lim_{|V_i| \to 0} \frac{\Phi(S_i)}{|V_i|}$

Positivity, Self-Adjointness

$$\{f(\cdot) \in C^{\infty}(\Omega) : f|_{\partial \Omega} \equiv 0\}$$
 "Dirichlet boundary conditions"

$$\mathcal{L}[f] := -\Delta f$$
$$\langle f, g \rangle := \int_{\Omega} f(x)g(x) \, dx$$

On board: I. Positive: $\langle f, \mathcal{L}[f] \rangle \geq 0$

2. Self-adjoint: $\langle f, \mathcal{L}[g]
angle = \langle \mathcal{L}[f], g
angle$

Proof

Proof of 1
$$\langle f, \mathscr{L}[f] \rangle = \int_{\Omega} f(-\nabla \cdot \nabla f) \, dV = \int_{\partial \Omega} f(-\nabla f \cdot \overrightarrow{n}) \, dS + \int_{\Omega} \nabla f \cdot \nabla f \, dV = \int_{\Omega} \nabla f \cdot \nabla f \, dV \ge 0$$

where the second equality follows from Green formula, and the third equality follows from $f|_{\partial\Omega} \equiv 0$

Proof of 2

$$\langle f, \mathscr{L}[g] \rangle = \int_{\Omega} f(-\nabla \cdot \nabla g) \, dV = \int_{\partial \Omega} f(-\nabla g \cdot \vec{n}) \, dS + \int_{\Omega} \nabla f \cdot \nabla g \, dV = \int_{\Omega} \nabla f \cdot \nabla g \, dV$$

where the second equality follows from Green formula, and the third equality follows
from $f|_{\partial \Omega} \equiv 0$
Similarly, $\langle \mathscr{L}[f], g \rangle = \int_{\Omega} \nabla g \cdot \nabla f \, dV$

It also shows
$$\langle f, \mathscr{L}[g] \rangle = \int_{\Omega} \nabla f \cdot \nabla g \, dV$$

Dirichlet Energy

Images made by E.Vouga

Proof

We use variational method to derive.

Lagrangian:
$$\mathbb{L}[f] = \frac{1}{2} \int \langle \nabla f, \nabla f \rangle + \int_{\partial \Omega} \lambda(x)(f(x) - g(x))$$

So

$$\delta \mathbb{L}[f] = \mathbb{L}[f + \delta h] - \mathbb{L}[f] = \int_{\Omega} \langle \nabla f, \nabla \delta h \rangle + \int_{\partial \Omega} \lambda(x) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla \cdot \nabla f) + \int_{\partial \Omega} \lambda(x) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) + \int_{\partial \Omega} \delta h(x) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) \delta h(x) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) \delta h(\nabla f \cdot \nabla f) \delta h(x) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) \delta h(\nabla f \cdot \nabla f) \delta h(x) \delta h(x) \delta h(x) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) \delta h(\nabla f \cdot \nabla f) \delta h(x) \delta h(x)$$

In the interior of Ω , $\Delta f \equiv 0$ so that $\delta \mathbb{L}[f] = 0$ for any δh

Harmonic Functions

Mean value property: $f(x) = \frac{1}{\pi r^2} \int_{B_r(x)} f(y) \, dA$

Images made by E.Vouga

http://www.ieeta.pt/polymeco/Screenshots/PolyMeCo_OneView.jpg

Map points to real numbers

Gradient Vector Field

$$\begin{array}{l} \nabla f: S \to \mathbb{R}^3 \text{ with} \\ \left\{ \begin{array}{l} \langle (\nabla f)(p), v \rangle = (df)_p(v), v \in T_p S \\ \langle (\nabla f)(p), N(p) \rangle = 0 \end{array} \right. \end{array}$$

Dirichlet Energy

Decreasing E

$$E[f] := \int_{S} \|\nabla f\|_2^2 \, dA$$

Images made by E.Vouga

What is Divergence?

$$V: S \to \mathbb{R}^3$$
 where $V(p) \in T_p S$
 $dV_p: T_p S \to \mathbb{R}^3$
 $\{e_1, e_2\} \subset T_p S$ orthonormal basis

$$(\nabla \cdot V)_p := \sum_{i=1}^2 \langle e_i, dV(e_i) \rangle_p$$

Things we should check (but probably won't):

• Independent of choice of basis

Eigenfunctions

 $\Delta \psi_i = \lambda_i \psi_i$

Vibration modes of surface (not volume!)

Nodal Domains

Theorem (Courant). The *n*-th eigenfunction of the Dirichlet boundary value problem has at most *n* nodal domains.

Practical Application

• Wave Equation:

$$\frac{\partial^2 u}{\partial t^2} = \Delta u$$

https://www.youtube.com/watch?v=3uMZzVvnSiU

FUNCTIONAL MAP

Map from X to Y

Maps and Correspondences

- Multiscale mappings
 - Point/pixel level
 - part level

Maps capture what is the same or similar across two data sets

A Dual View: Functions and Operators

- Functions on data
 - Properties, attributes, descriptors, part indicators, etc.
- Operators on functions
 - Maps of functions to functions
 - Laplace-Beltrami operator on a manifold ${\cal M}$

Parts

 $\Delta: C^{\infty}(M) \to C^{\infty}(M), \Delta f = \operatorname{div} \nabla f$

Laplace Beltrami eigenfunctions

Starting from a Regular Map φ

 ϕ : lion \rightarrow cat

Attribute Transfer via Pull-Back

 T_{ϕ} : cat \rightarrow lion

from cat to lion

Functions on cat are transferred to lion using T_{ϕ}

 T_{ϕ} is a linear operator (matrix)

 $T_{\phi}: L^2(\operatorname{cat}) \to L^2(\operatorname{lion})$

Functional Map

Dual of a point-to-point map

Bases for a Function Space

Point basis Finite-element basis

Local bases

Bases for a Function Space

More Exotic Bases Possible

Textons, wavelets, ...

Functional Map: Define Maps Across Objects by Relating Basis by a Linear Matrix (Operator)

Functional Map: Define Maps Across Objects by Relating Basis by a Linear Matrix (Operator)

Enough to know these

Functional Map Matrix

Maps as Linear Operators

- An ordinary shape map lifts to a linear operator mapping the function spaces
- With a truncated hierarchical basis, compact representations of functional maps are possible as ordinary matrices
- Map composition becomes ordinary matrix multiplication
- Functional maps can express many-to-many associations, generalizing classical 1-1 maps

Using truncated Laplace-Beltrami basis

Estimating the Mapping Matrix

Suppose we don't know *C*. However, we expect a pair of functions $f: M \to \mathbb{R}$ and $g: N \to \mathbb{R}$ to correspond. Then, *C* must be s.t. $C\mathbf{a} \approx \mathbf{b}$

where $f = \sum_i \mathbf{a_i} \phi_i^M$, $g = \sum_i \mathbf{b}_i \phi_i^N$

Given enough $\{a_i, b_i\}$ pairs in correspondence, we can recover C through a linear least squares system.

SPECTRAL NEURAL NETWORKS

Fourier analysis

A function $f: [-\pi, \pi] \to \mathbb{R}$ can be written as Fourier series

$$f(x) = \sum_{\omega} \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x') e^{i\omega x'} dx'}_{\hat{f}(\omega) = \langle f, e^{-i\omega x} \rangle_{L^2([-\pi,\pi])}} e^{-i\omega x}$$

Fourier basis = Laplacian eigenfunctions: $\Delta e^{-i\omega x} = \omega^2 e^{-i\omega x}$

Euclidean domain

A function $f: \mathcal{X} \to \mathbb{R}$ can be written as Fourier series

$$f(x) = \sum_{k \ge 0} \underbrace{\int_{\mathcal{X}} f(x') \phi_k(x') dx'}_{\hat{f}_k = \langle f, \phi_k
angle_{L^2(\mathcal{X})}} \phi_k(x)$$

Fourier basis = Laplacian eigenfunctions: $\Delta \phi_k(x) = \lambda_k \phi_k(x)$

non Euclidean domain

from Jonathan Masci et al

Convolution Theorem in Euclidean domain

Given two functions $f,g:[-\pi,\pi]\to\mathbb{R}$ their convolution is a function

$$(f\star g)(x) = \int_{-\pi}^{\pi} f(\xi)g(x-\xi)d\xi$$

Convolution Theorem: Fourier transform diagonalizes the convolution operator \Rightarrow convolution can be computed in the Fourier domain as

$$f \star g = \mathcal{F}^{-1}(\mathcal{F}f \cdot \mathcal{F}g)$$

from Jonathan Masci et al

Convolution Theorem in Euclidean domain

Convolution Theorem in non Euclidean domain

Generalized convolution of $f,g\in L^2(X)$ can be defined by analogy

$$(f \star g)(x) = \sum_{k \ge 1} \langle f, \phi_k \rangle_{L^2(X)} \langle g, \phi_k \rangle_{L^2(X)} \phi_k(x)$$

from Jonathan Masci et al

Convolution Theorem in non Euclidean domain

Generalized convolution of $f, g \in L^2(X)$ can be defined by analogy

modified from Jonathan Masci et al

Convolution Theorem in non Euclidean domain

Generalized convolution of $f, g \in L^2(X)$ can be defined by analogy

modified from Jonathan Masci et a

Spectral CNN

• Observation:

In Fourier analysis, smoothness and sparsity are dual notions

Joan Bruna et al. 2013

Spectral CNN

• Use <u>smooth</u> interpolation kernels (spline, polynomial, heat kernel, etc.) to parameterize the filters

spatially locally concentrated

Joan Bruna et al. 2013

Spectral CNN

 Use smooth interpolation kernels (spline, polynomial, heat kernel, etc.) to parameterize the filters

spatially locally concentrated

control #parameter

Joan Bruna et al. 2013

Spectral Dilated Convolution

- Parameterize filters with interpolation kernels.
- Shrink kernel bandwidth to increase spatial support of filters

Li Yi et al. 2017

Cross Domain Discrepancy

- Parameterize filters with interpolation kernels.
- Shrink kernel bandwidth to increase spatial support of filters

Functional Map for Domain Synchronization

Synchronization Visualization

before synchronization

after synchronization

SyncSpecCNN

Li Yi et al. 2017

SyncSpecCNN

key point prediction

Li Yi et al. 2017

SPHERICAL CNN (A SPECTIAL CASE OF SPECTRAL CNN)

A Special Case: Spherical CNN

- If the surface is always a SPHERE, no worry about the functional space alignment anymore
- Generate a spherical representation

- Do Spectral CNN
 - Has numerical tricks exploiting the symmetry of sphere

Cohen et al., "Spherical CNN", *ICLR 2018* Esteves et al., "Learning SO(3) Equivariant Representations with Spherical CNNs", *ECCV 2018*