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Laplacian
(Graph Embedding, Heat Kernel Signature,

Continuous Theory)

Instructor: Hao Su



LAPLACIAN GRAPH EMBEDDING

UCSan Diego




1-d Laplacian Embedding

Map a weighted graph onto a line such that connected nodes
stay as close as possible, i.e., minimize

D i i1 Wiz (f(vi) — f(v;))?, or:

argm}nfTLf with: f'f=1and f'1=0

The solution is the eigenvector associated with the smallest
nonzero eigenvalue of the eigenvalue problem: Lf = A f,
namely the Fiedler vector us.

For more details on this minimization see Golub & Van Loan
Matrix Computations, chapter 8 (The symmetric eigenvalue
problem).



1-d Embedding Example




Higher-d Embeddings

@ Embed the graph in a k-dimensional Euclidean space. The

embedding is given by the n x k matrix F = [f, f5... f;]
where the i-th row of this matrix — f(z) — corresponds to the

Euclidean coordinates of the i-th graph node v;.
@ We need to minimize (Belkin & Niyogi '03):

arg iy 2 £ £ with: FTR -1
1°°d k 7“.]:1

@ The solution is provided by the matrix of eigenvectors
corresponding to the £ lowest nonzero eigenvalues of the
eigenvalue problem Lf = \f.



2-d Embeddings
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LAPLACIAN FOR SHAPE DESCRIPTOR

UCSan Diego




Graph Isomorphism




Why Intrinsic?

Many shapes have natural
deformations and articulations
that do not change the nature
of the shape.

But they change its embedding
3D space.




Why Intrinsic?

Normal distances can change
drastically under such deformations

A descriptor based on Euclidean
~distance histograms, like D2,
- would fail




Geodesic / Intrinsic Distances

Near isometric deformations
are common for both organic
and man-made shapes

Intrinsic distances are
invariant to isometric
deformations

M,

geodesic = intrinsic

Mo

isometry = length-preserving transform No stretching, shrinking, or tearing



Geodesic / Intrinsic Distances

Sampling Computing geodesic
distances

We can use geodesic
distance histograms

Normalized geodesic
distance matrix

Row 1 m
Row 2 tcl:l]_.
Row 3
Rowi 4 fiafln ,
Row N
Set of histograms

Ruggeri et al. 2008



Geodesic / Intrinsic Distances
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What About Local Intrinsic Descriptors?

e Isometrically invariant features
e Curvature
» Geodesic Distance
 Histogram of Geodesic Distances (similar to D2)
» Global Point Signature of':':::ispau

« Heat Kernel Signature  curvatures ~
« Wave Kernel Signature

normal
vector

tangent
plane

14



Gaussian Curvature

Theorema Egregium
(“Remarkable Theorem"):

Gaussian curvature
IS Intrinsic.

K = K1RK2



Gaussian Curvature

Problems




Gaussian Curvature

Problems

Solomon



Intrinsic Observation

Heat diffusion patterns are not
affected if you bend a surface.



Global Point Signature
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“Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation”
Rustamoyv, SGP 2007



Global Point Signature
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GPS(p) i= (= 01(0),~ = a(p), ~ = a(o). -

If surface does not self-intersect, neither
does the GPS embedding.

Proof: Laplacian eigenfunctions span ; if GPS(p)=GPS(q), then all functions on S would
be equal at p and q.



Global Point Signature

by L
v 4 .‘.." L ‘ ' LA
" .' - 1 .
2 3 4 5 6 7 8 9 IO

GPS(p) := (—\/%—1%(19),—\/%qbz(p),—\/%—gqbs(p)w--

GPS is isometry-invariant.

Proof: Comes from the Laplacian.



Global Point Signature

GPS(p) = \/rfﬁl (), \/—Tfﬁz (p), \/T ¢3(p), -
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Figure 4: Armadillo and its deformations.

Similar to D2, but use histograms in embedded space
(rather than Euclidean) Rustamov et al. 2007



Global Point Signature

1 1 1

Vqﬁh@%;a?%@h——%%@%”)

cps(p) =

e Pros
e |sometry-invariant
e Global (each point feature depends on entire shape)

e Cons

e Eigenfunctions may flip sign

e Eigenfunctions might change positions due to
deformations

e Only global

Rustamov et al. 2007



RQO@“Z Connection to Physics

ou _
ot

Heat equation

—Au



Heat Kernel Map

Heat Kernel Map kM (p, )
‘“\*\ A

. 0.3
time ¢

HKM,(z,t) := ki(p, )

How much heat diffuses from p to x in time t?

One Point Isometric Matching with the Heat Kernel
Ovsjanikov et al. 2010



Heat Kernel Map

Heat Kernel Map kM (p, x)

. 0.3
time ¢

HKM,(z,t) := ki(p, )

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel KAIN
Ovsjanikov et al. 2010




