

Laplacian (Graph Embedding, Heat Kernel Signature, Continuous Theory)

Instructor: Hao Su

LAPLACIAN GRAPH EMBEDDING

1-d Laplacian Embedding

• Map a weighted graph onto a line such that connected nodes stay as close as possible, i.e., minimize $\sum_{i,j=1}^{n} w_{ij} (f(v_i) - f(v_j))^2$, or:

$$\arg\min_{\boldsymbol{f}} \boldsymbol{f}^\top \mathbf{L} \boldsymbol{f} \text{ with: } \boldsymbol{f}^\top \boldsymbol{f} = 1 \text{ and } \boldsymbol{f}^\top \mathbf{1} = 0$$

- The solution is the eigenvector associated with the smallest nonzero eigenvalue of the eigenvalue problem: $\mathbf{L}f = \lambda f$, namely the Fiedler vector u_2 .
- For more details on this minimization see Golub & Van Loan Matrix Computations, chapter 8 (The symmetric eigenvalue problem).

1-d Embedding Example

Higher-d Embeddings

- Embed the graph in a k-dimensional Euclidean space. The embedding is given by the n × k matrix F = [f₁f₂...f_k] where the *i*-th row of this matrix f⁽ⁱ⁾ corresponds to the Euclidean coordinates of the *i*-th graph node v_i.
- We need to minimize (Belkin & Niyogi '03):

$$rgmin_{1} \min_{k} \sum_{i,j=1}^{n} w_{ij} \| oldsymbol{f}^{(i)} - oldsymbol{f}^{(j)} \|^2$$
 with: $\mathbf{F}^{ op} \mathbf{F} = \mathbf{I}.$

 The solution is provided by the matrix of eigenvectors corresponding to the k lowest nonzero eigenvalues of the eigenvalue problem Lf = λf.

2-d Embeddings

LAPLACIAN FOR SHAPE DESCRIPTOR

Graph Isomorphism

Intrinsic alignment of manifolds

Why Intrinsic?

Many shapes have natural deformations and articulations that do not change the nature of the shape.

But they change its embedding 3D space.

Why Intrinsic?

Geodesic / Intrinsic Distances

Near isometric deformations are common for both organic and man-made shapes

Intrinsic distances are invariant to isometric deformations

No stretching, shrinking, or tearing

isometry = length-preserving transform

Geodesic / Intrinsic Distances

Geodesic / Intrinsic Distances

Ruggeri et al. 2008

What About Local Intrinsic Descriptors?

- Isometrically invariant features
 - Curvature
 - Geodesic Distance
 - Histogram of Geodesic Distances (similar to D2)
 - Global Point Signature
 - Heat Kernel Signature
 - Wave Kernel Signature

Gaussian Curvature

Theorema Egregium ("Remarkable Theorem"): Gaussian curvature is intrinsic.

http://www.sciencedirect.com/science/article/pii/Sooroy.cBgrooorg8g

Gaussian Curvature

Problems

Gaussian Curvature

Problems

http://www.integrityware.com/images/Merceedes/Gaussian/Curvature.jpg

 $K = \kappa_1 \kappa_2$

Solomon

Intrinsic Observation

Heat diffusion patterns are not affected if you bend a surface.

 $GPS(p) := \left(-\frac{1}{\sqrt{\lambda_1}}\phi_1(p), -\frac{1}{\sqrt{\lambda_2}}\phi_2(p), -\frac{1}{\sqrt{\lambda_3}}\phi_3(p), \cdots\right)$

"Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation" Rustamov, SGP 2007

If surface does not self-intersect, neither does the GPS embedding.

Proof: Laplacian eigenfunctions span ; if GPS(p)=GPS(q), then all functions on S would be equal at p and q.

GPS is isometry-invariant.

Proof: Comes from the Laplacian.

Figure 4: Armadillo and its deformations.

Similar to D2, but use histograms in embedded space (rather than Euclidean)

Rustamov et al. 2007

$$GPS(p) = \left(rac{1}{\sqrt{\lambda_1}}\phi_1(p), rac{1}{\sqrt{\lambda_2}}\phi_2(p), rac{1}{\sqrt{\lambda_3}}\phi_3(p), \cdots\right)$$

- Pros
 - Isometry-invariant
 - Global (each point feature depends on entire shape)
- Cons
 - Eigenfunctions may flip sign
 - Eigenfunctions might change positions due to deformations
 - Only global

Recall: Connection to Physics

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

Heat equation

Heat Kernel Map

How much heat diffuses from p to x in time t?

One Point Isometric Matching with the Heat Kernel Ovsjanikov et al. 2010

Heat Kernel Map

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel Ovsjanikov et al. 2010