

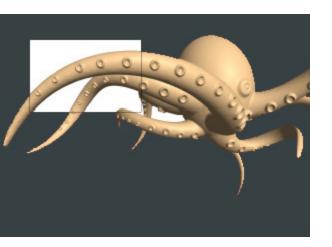
Laplacian (Mesh editing, Spectral Graph Theory)

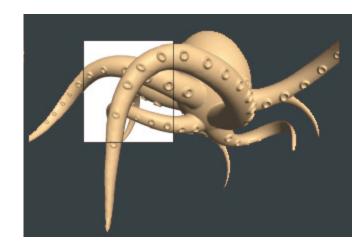
Instructor: Hao Su

LAPLACIAN MESH EDITING

Our Goal

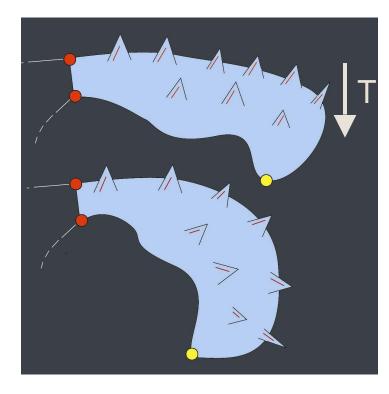
Edit a surface while retaining its visual appearance





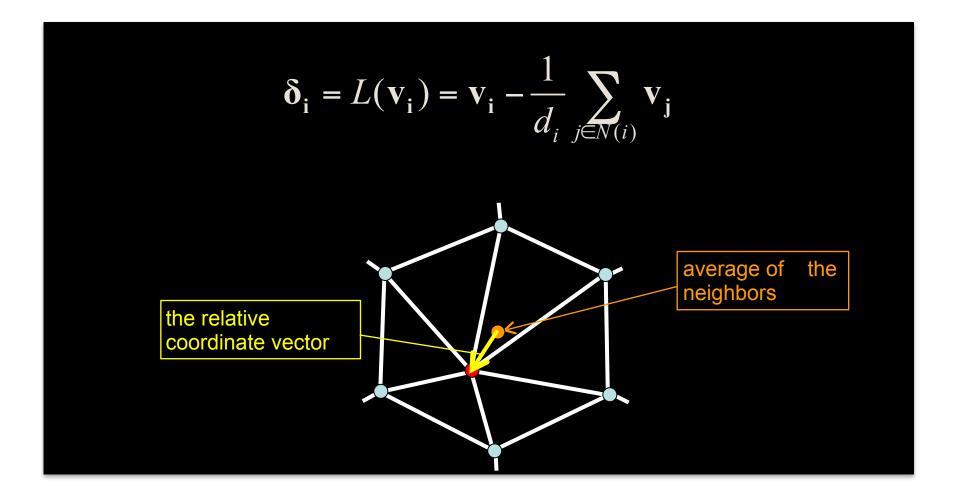
Editing a surface while retaining its visual appearance

- Smooth deformation
- Smooth transition
- Preserve relative local directions of the details
- Minimal user interaction
- Interactive time response



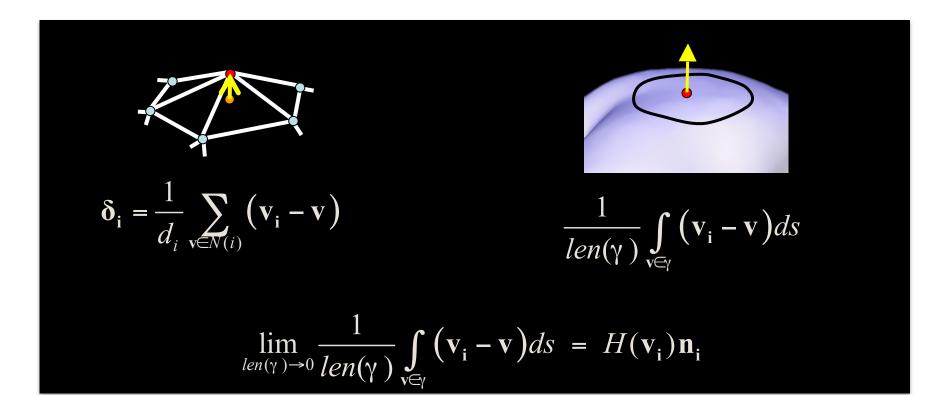
Differential Coordinates

Differential coordinates are defined for triangular mesh vertices



Why differential coordinates?

- They represent the local detail / local shape description
 - The direction approximates the normal
 - The size approximates the mean curvature



Laplacian reconstruction

• Transforming the mesh to the differential representation:

$$\left(\delta^{(x)}, \delta^{(y)}, \delta^{(z)} \right) = M \left(P^{(x)}, P^{(y)}, P^{(z)} \right)$$
$$\left(P^{(x)}, P^{(y)}, P^{(z)} \right) = M^{-1} \left(\delta^{(x)}, \delta^{(y)}, \delta^{(z)} \right)$$

• Note that rank(M) = n - 1, where n = #V

$$M_{ij} = \begin{cases} 1 & i = j \\ -\frac{1}{d_i} & j \in \{j : (j,i) \in E\} \\ 0 & otherwise \end{cases}$$

Laplacian reconstruction

• Thus for reconstructing the mesh from the Laplacian representation:

add constraints to get full rank system and therefore unique solution, i.e. unique minimizer to the functional

$$\left\| M \cdot P^{(x)} - \delta^{(x)} \right\|^{2} + \sum_{i \in I} w_{i} \left(p_{i}^{(x)} - c_{i}^{(x)} \right)^{2}$$

where *I* is the index set of constrained vertices, $w_i > 0$ are weights and c_i are the spatial constraints.

Laplacian reconstruction

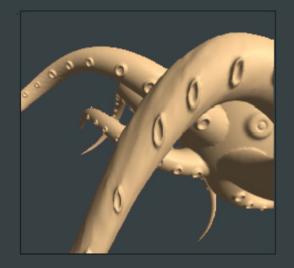
The use of Laplacian (differential) representation and least squares solution forces local detail preserving

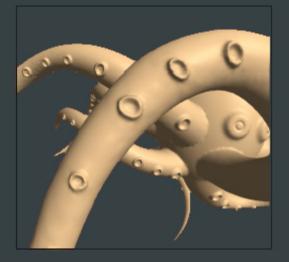
Edit a Surface While Retaining its Visual Appearance

Original surface

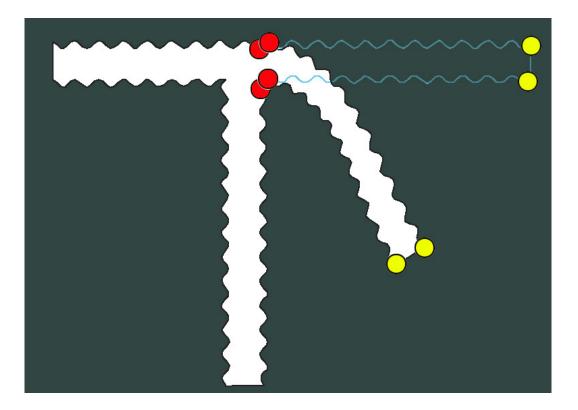
The details are deformed

The details shape is preserved





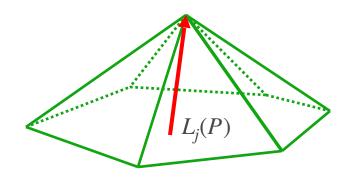
We'd like to perform deformation which preserves the detail orientation and shape:

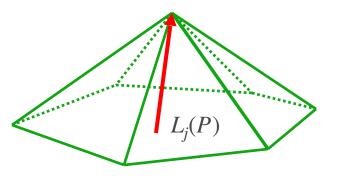


We'd like to estimate the target shape Laplacians

• The Laplacians are translation invariant:

 $L_m(T(P)) = L_m(P)$





- Laplacians are not rotational invariant (they represent detail with orientation)
- Note that the Laplacian operator commute with linear rotations :

$$L_m(R(P)) = R(L_m(P))$$

 $L_j(P)$

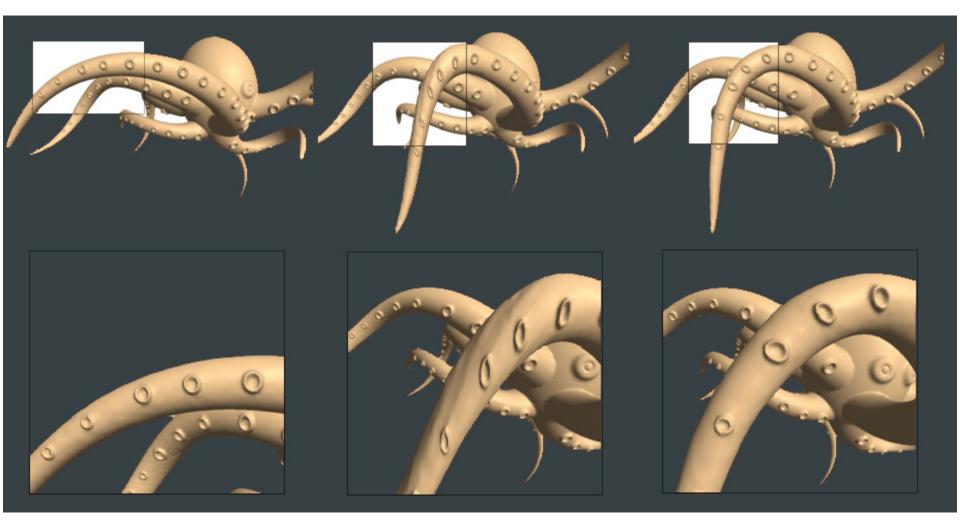
• Therefore we get:

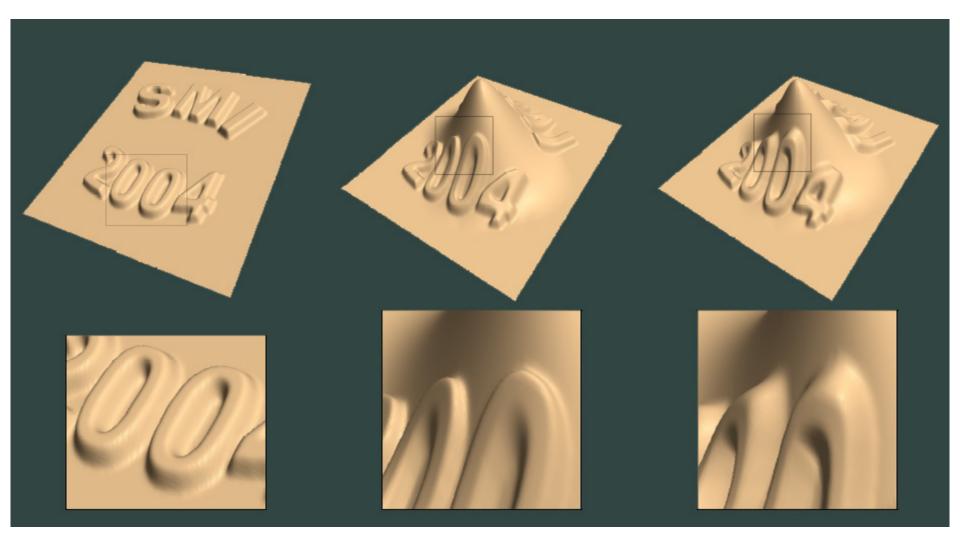
$$L_{j}(P') = L_{j}(A_{j}(P)) =$$
$$= L_{j}(R_{j}(P)) = R_{j}(L_{j}(P))$$

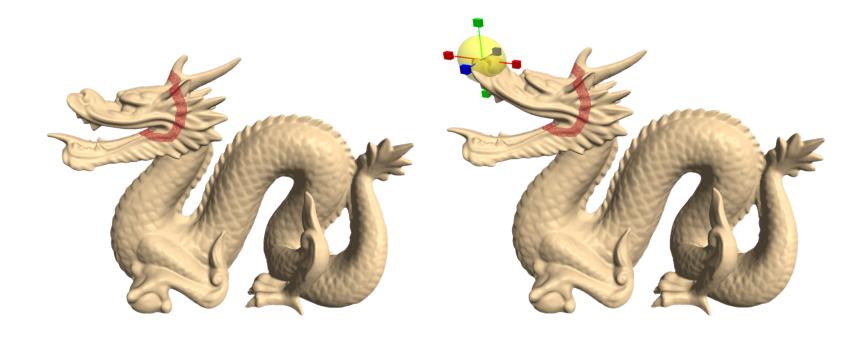
• So all we need is to estimate the local rotations.

- In summary we have the following steps:
 - **1**. Reconstruct the surface with original Laplacians: $M^{-1}(\delta, C)$
 - **2.** Approximate local rotations R_{j}
 - **3.** Rotate each Laplacian coordinate $L_i(P)$ by R_i
 - **4.** Reconstruct the edited surface:

$$M^{-1}\left[R_j(L_j(P)),C\right]$$

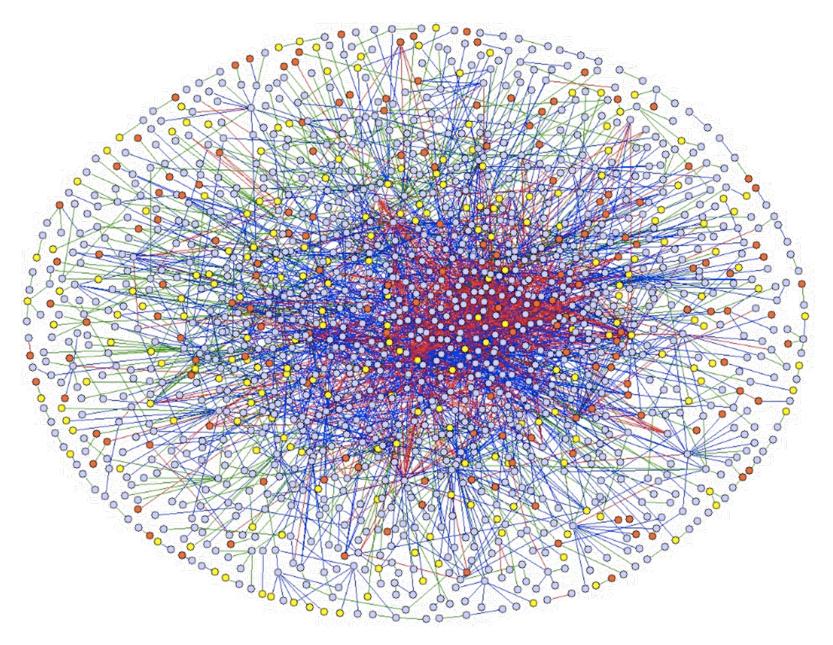






GENERAL DISCRETE GRAPH LAPLACIAN (NOTATIONS)

The Graph View of Data



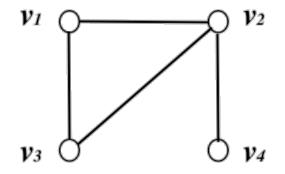
Social Networks

Adjacency Matrices

• For a graph with n vertices, the entries of the $n \times n$ adjacency matrix are defined by:

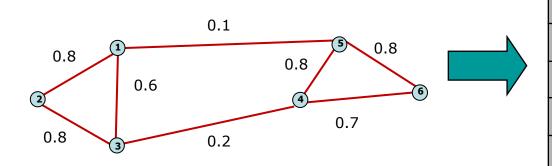
$$\mathbf{A} := \begin{cases} A_{ij} = 1 & \text{if there is an edge } e_{ij} \\ A_{ij} = 0 & \text{if there is no edge} \\ A_{ii} = 0 \end{cases}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$



Weighted Matrices

- Adjacency matrix (A)
 - *n X n* matrix
 - $A = [w_{ij}]$: edge weight between vertex x_i and x_j

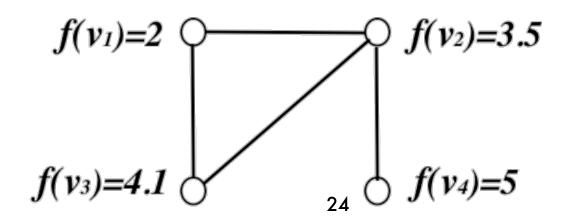


	J							
	x_1	\boldsymbol{x}_2	<i>x</i> ₃	x_4	x_{5}	x_6		
\boldsymbol{x}_{1}	0	0.8	0.6	0	0.1	0		
\boldsymbol{x}_2	0.8	0	0.8	0	0	0		
<i>x</i> 33	0.6	0.8	0	0.2	0	0		
x_4	0	0	0.2	0	0.8	0.7		
<i>x</i> 5	0.1	0	0	0.8	0	0.8		
x_6	0	0	0	0.7	0.8	0		

- Important properties:
 - Symmetric matrix
 - ⇒ Eigenvalues are <u>real</u>
 - ⇒ Eigenvector could span <u>orthogonal base</u>

Functions on Graphs

- We consider real-valued functions on the set of the graph's vertices, *f* : V → ℝ. Such a function assigns a real number to each graph node.
- f is a vector indexed by the graph's vertices, hence $f \in \mathbb{R}^n$.
- Notation: $f = (f(v_1), \dots, f(v_n)) = (f(1), \dots, f(n))$.
- The eigenvectors of the adjacency matrix, $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, can be viewed as *eigenfunctions*.



Operators and Quadratic Forms

The adjacency matrix can be viewed as an operator

$$\boldsymbol{g} = \mathbf{A}\boldsymbol{f}; g(i) = \sum_{i \sim j} f(j)$$

• It can also be viewed as a quadratic form:

$$\boldsymbol{f}^{\top} \mathbf{A} \boldsymbol{f} = \sum_{e_{ij}} f(i) f(j)$$

Graph (Unnormalized) Laplacian

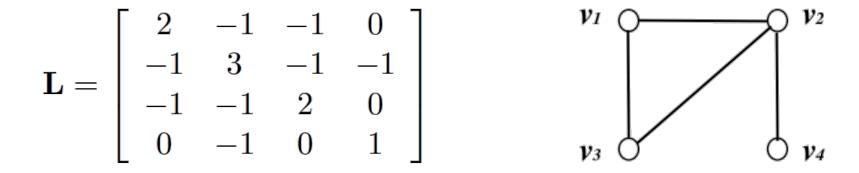
•
$$\mathbf{L} = \bigtriangledown^\top \bigtriangledown$$

•
$$(\mathbf{L}f)(v_i) = \sum_{v_j \sim v_i} (f(v_i) - f(v_j))$$

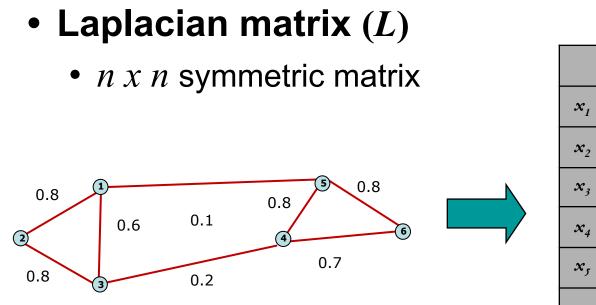
Connection between the Laplacian and the adjacency matrices:

$$L = D - A$$

• The degree matrix: $\mathbf{D} := D_{ii} = d(v_i)$.



Laplacian Matrix



$$L = D - A$$

	\boldsymbol{x}_{1}	x_2	X 3	x_4	<i>x</i> 5	x_6
\boldsymbol{x}_{1}	1.5	-0.8	-0.6	0	-0.1	0
\boldsymbol{x}_2	-0.8	1.6	-0.8	0	0	0
<i>x</i> ₃	-0.6	-0.8	1.6	-0.2	0	0
x_4	0	0	-0.2	1.7	-0.8	-0.7
x_{5}	-0.1	0	0	0.8-	1.7	-0.8
x_6	0	0	0	-0.7	-0.8	1.5

- Important properties:
 - Eigenvalues are non-negative real numbers (Gershgorin circle theorem)
 - Eigenvectors are real and orthogonal
 - Eigenvalues and eigenvectors provide an insight into the connectivity of the graph...

Laplacian Defines Natural Quadratic Form of Graphs

$$x^{T}Lx = \sum_{(i,j)\in E} (x(i) - x(j))^{2}$$

L = D - A where D is diagonal matrix of degrees

Undirected Weighted Graphs

- We consider *undirected weighted graphs*: Each edge e_{ij} is weighted by w_{ij} > 0.
- The Laplacian as an operator:

$$(\mathbf{L}\boldsymbol{f})(v_i) = \sum_{v_j \sim v_i} w_{ij}(f(v_i) - f(v_j))$$

• As a quadratic form:

$$\boldsymbol{f}^{\top} \mathbf{L} \boldsymbol{f} = \frac{1}{2} \sum_{e_{ij}} w_{ij} (f(v_i) - f(v_j))^2$$

- L is symmetric and positive semi-definite.
- L has *n* non-negative, real-valued eigenvalues: $0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$.

GENERAL DISCRETE GRAPH LAPLACIAN (SOME PROPERTIES)

Connected Graph Laplacians

- $\mathbf{L}\boldsymbol{u} = \lambda \boldsymbol{u}$.
- $\mathbf{L}\mathbf{1}_n = \mathbf{0}$, $\lambda_1 = 0$ is the smallest eigenvalue.
- The one vector: $\mathbf{1}_n = (1 \dots 1)^\top$.

•
$$0 = u^{\top} \mathbf{L} u = \sum_{i,j=1}^{n} w_{ij} (u(i) - u(j))^2.$$

If any two vertices are connected by a path, then

 u = (u(1),...,u(n)) needs to be constant at all vertices such that the quadratic form vanishes. Therefore, a graph with one connected component has the constant vector u₁ = 1_n as the only eigenvector with eigenvalue 0.

A Graph with k Connected Components

Each connected component has an associated Laplacian.
 Therefore, we can write matrix L as a *block diagonal matrix*:

$$\mathbf{L} = \left[egin{array}{ccc} \mathbf{L}_1 & & & \ & \ddots & & \ & & \mathbf{L}_k \end{array}
ight]$$

- The spectrum of L is given by the union of the spectra of L_i .
- Each block corresponds to a connected component, hence each matrix \mathbf{L}_i has an eigenvalue 0 with multiplicity 1.
- The spectrum of \mathbf{L} is given by the union of the spectra of \mathbf{L}_i .
- The eigenvalue $\lambda_1 = 0$ has multiplicity k.

The Eigenspace of $\lambda = 0$

• The eigenspace corresponding to $\lambda_1 = \ldots = \lambda_k = 0$ is spanned by the k mutually orthogonal vectors:

$$egin{aligned} oldsymbol{u}_1 &= oldsymbol{1}_{L_1} \ & \dots \ oldsymbol{u}_k &= oldsymbol{1}_{L_k} \end{aligned}$$

- with $\mathbf{1}_{L_i} = (0000111110000)^\top \in \mathbb{R}^n$
- These vectors are the *indicator vectors* of the graph's connected components.
- Notice that $\mathbf{1}_{L_1} + \ldots + \mathbf{1}_{L_k} = \mathbf{1}_n$

The Fiedler Vector

- The first non-null eigenvalue λ_{k+1} is called the Fiedler value.
- The corresponding eigenvector u_{k+1} is called the Fiedler vector.
- The multiplicity of the Fiedler eigenvalue is always equal to 1.
- The Fiedler value is the *algebraic connectivity of a graph*, the further from 0, the more connected.
- The Fidler vector has been extensively used for spectral bi-partioning
- Theoretical results are summarized in Spielman & Teng 2007: http://cs-www.cs.yale.edu/homes/spielman/

Laplacian Eigenvectors for Connected Graphs

•
$$\boldsymbol{u}_1 = \boldsymbol{1}_n, \mathbf{L}\boldsymbol{1}_n = \boldsymbol{0}.$$

- u_2 is the *the Fiedler vector* with multiplicity 1.
- The eigenvectors form an orthonormal basis: $u_i^{\top}u_j = \delta_{ij}$.
- For any eigenvector $\boldsymbol{u}_i = (\boldsymbol{u}_i(v_1) \dots \boldsymbol{u}_i(v_n))^\top, \ 2 \leq i \leq n$:

$$\boldsymbol{u}_i^{ op} \boldsymbol{1}_n = 0$$

• Hence the components of u_i , $2 \le i \le n$ satisfy:

• Each component is bounded by:

$$\sum_{j=1}^{n} \boldsymbol{u}_i(v_j) = 0$$

 λ_2 = algebraic connectivity, monotone under graph inclusion

$$-1 < \boldsymbol{u}_i(v_j) < 1$$

Some Special Graphs

- The complete graph on n vertices, K_n , which has edge set $\{(u, v) : u \neq v\}$.
- The star graph on n vertices, S_n , which has edge set $\{(1, u) : 2 \le u \le n\}$.
- The hypercube

The **hypercube** on 2^k vertices. The vertices are elements of $\{0,1\}^k$. Edges exist between vertices that differ in only one coordinate.

Complete Graph

Lemma 2.5.1. The Laplacian of K_n has eigenvalue 0 with multiplicity 1 and n with multiplicity n-1.

Proof. To compute the non-zero eigenvalues, let ψ be any non-zero vector orthogonal to the all-1s vector, so

$$\sum_{u} \boldsymbol{\psi}(u) = 0. \tag{2.6}$$

We now compute the first coordinate of $L_{K_n}\psi$. Using (2.3), we find

$$(\boldsymbol{L}_{K_n} \boldsymbol{\psi})(1) = \sum_{v \ge 2} (\boldsymbol{\psi}(1) - \boldsymbol{\psi}(v)) = (n-1)\boldsymbol{\psi}(1) - \sum_{v=2}^n \boldsymbol{\psi}(v) = n\boldsymbol{\psi}(1), \quad ext{by (2.6)}.$$

As the choice of coordinate was arbitrary, we have $L\psi = n\psi$. So, every vector orthogonal to the all-1s vector is an eigenvector of eigenvalue n.

Alternative approach. Observe that $\boldsymbol{L}_{K_n} = n\boldsymbol{I} - \mathbf{1}\mathbf{1}^T$.

Star Graph

Lemma 2.5.2. Let G = (V, E) be a graph, and let v and w be vertices of degree one that are both connected to another vertex z. Then, the vector $\boldsymbol{\psi} = \boldsymbol{\delta}_v - \boldsymbol{\delta}_w$ is an eigenvector of \boldsymbol{L}_G of eigenvalue 1.

Proof. Just multiply L_G by ψ , and check vertex-by-vertex that it equals ψ .

As eigenvectors of different eigenvalues are orthogonal, this implies that $\psi(u) = \psi(v)$ for every eigenvector with eigenvalue different from 1.

Lemma 2.5.3. The graph S_n has eigenvalue 0 with multiplicity 1, eigenvalue 1 with multiplicity n-2, and eigenvalue n with multiplicity 1.

Hypercube Graph

• Exercise