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Our Goal

Edit a surface while retaining its visual appearance




Editing a surface while retaining its

Smooth deformation
Smooth transition
Preserve relative local directions of
the

Minimal user interaction
Interactive time response




Differential Coordinates

- Differential coordinates are defined for triangular mesh
vertices

average of the
neighbors

the relative
coordinate vector




Why differential coordinates?

m They represent the local detail / local shape

description
« The direction approximates the normal
* The size approximates the mean curvature
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Laplacian reconstruction

 Transforming the mesh to the

(6.00,00)=n1 (P, PV, PO)

(P(x),P(y),P(Z))= M (6 (x),é‘)(Y),é(Z))

- Note that rank(M) =n — 1, where n = #V

otherwise



Laplacian reconstruction

« Thus for reconstructing the mesh from the Laplacian
representation:

add to get full rank system and therefore
solution, i.e. unique minimizer to the functional

where [ is the index set of constrained vertices, w; > 0 are weights
and c; are the spatial constraints.



Laplacian reconstruction

The use of Laplacian (differential) representation

and least squares solution forces local detail
preserving




Edit a Surface While Retaining its Visual Appearance

The details are The details shape
Original surface deformed IS preserved




Rotated Laplacian reconstruction

We'd like to perform deformation which preserves the
detail orientation and shape

We'd like to estimate the target shape Laplacians



Rotated Laplacian reconstruction

- The Laplacians are iInvariant:

L (T(P))=L,(P)




Rotated Laplacian reconstruction

» Laplacians are not invariant (they represent
detail with orientation)

 Note that the Laplacian operator with linear
rotations :

L, (R(P)) = R(L, (P))




Rotated Laplacian reconstruction

* Therefore we get:

Lj(P’) = LJ(A](P)) =

= L](R](P)) = RJ(L](P))

 So all we need is to estimate the local rotations.



Rotated Laplacian reconstruction

 In summary we have the following steps:

1. Reconstruct the surface with original Laplacians:

M7@S,0)

2. Approximate local rotations R y

3. Rotate each Laplacian coordinate L;(P) by R,

4. Reconstruct the edited surface:

M~ [R,(L;(P)),C]
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The Graph View of Data




Social Networks
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Adjacency Matrices

@ For a graph with n vertices, the entries of the n x n adjacency
matrix are defined by:

([ A;; =1 if there is an edge e;;
A=< A;; =0 if there is no edge

| A =0
0 1 1 0 Vi (O O V2
1 0 1 1
A= 1 1 0 0
01 0 0 Vs O v




Weighted Matrices

* Adjacency matrix (4)
* n X n matrix

» 4=[w;]: edge weight between vertex x; and x;

Xy

X,

X3

0.6

* |mportant properties:
— Symmetric matrix
= Eigenvalues are real

= Eigenvector could span orthogonal base




Functions on Graphs

@ We consider real-valued functions on the set of the graph’s
vertices, f : ¥V — R. Such a function assigns a real number
to each graph node.

@ f is a vector indexed by the graph’s vertices, hence f € R".

e Notation: f = (f(v1),...,f(vn)) = (f(1),...,f(n)).

@ The eigenvectors of the adjacency matrix, Ax = Ax, can be
viewed as eigenfunctions.

Sfovr)=2 O O f(v2)=3.5

f(v3)=4.1 e f(va)=5



Operators and Quadratic Forms

@ The adjacency matrix can be viewed as an operator

g=Af;g(i)=> f(j)

1~

@ It can also be viewed as a quadratic form:

FIAF =) f@)f()

€ij
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Graph (Unnormalized) Laplacian

L=v'v
(L) (i) = 220, (f(00) = f(07))

Connection between the Laplacian and the adjacency matrices:
L=D-A

The degree matrix: D := D;; = d(v;).

T2 1 —1 0 i O OV
1 3 -1 -1

L=1 41 1 9
i 0 —1 0 1 i V3 O v4
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Laplacian Matrix

L=D-4

e Laplacian matrix (L)
* n X n symmetric matrix

* Important properties:
— Eigenvalues are non-negative real NnUMbErs cersngori cice teorem)
— Eigenvectors are real and orthogonal

— Eigenvalues and eigenvectors provide an insight into
the connectivity of the graph...



Laplacian Defines Natural Quadratic Form of
Graphs

Tle= 3" (a(i) - 2(j))’

(1,j)EE

[, = ) — A where D is diagonal matrix of degrees

[ 1 -1 0 0\

—1 2 —1 0
0 —1 2 —1

\ 0 0 -1 1)
O—o—60—0




Undirected Weighted Graphs

We consider undirected weighted graphs: Each edge e;; is
weighted by w;; > 0.

The Laplacian as an operator:

LA)w) = 3 wigfw) = ()
As a quadratic form:

FTLE = 5 D wi(f(w0) = f(0)°

L is symmetric and positive semi-definite.

L has n non-negative, real-valued eigenvalues:
O:)\lgAQS"’SATZ'
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Connected Graph Laplacians

Lu = \u.
L1, =0, A\; =0 is the smallest eigenvalue.

The one vector: 1, = (1...1)".

0=u'Lu= ZZj:l wij(u(i) — u(j))*.

If any two vertices are connected by a path, then

u = (u(1),...,u(n)) needs to be constant at all vertices such
that the quadratic form vanishes. Therefore, a graph with one

connected component has the constant vector u; = 1,, as the
only eigenvector with eigenvalue 0.



A Graph with k Connected Components

Each connected component has an associated Laplacian.
Therefore, we can write matrix L as a block diagonal matrix:

Ly
[ —

L

The spectrum of L is given by the union of the spectra of L;.

Each block corresponds to a connected component, hence
each matrix L; has an eigenvalue 0 with multiplicity 1.

The spectrum of L is given by the union of the spectra of L;.
The eigenvalue Ay = 0 has multiplicity k.



The Eigenspace of A=0

@ The eigenspace correspondingto Ay =...= X\ =0 s
spanned by the £ mutually orthogonal vectors:

U1 = 1L1
U = lLk

o with 1, = (0000111110000)" € R"

@ These vectors are the indicator vectors of the graph’s
connected components.

e Noticethat 1., +...+1, =1,
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The Fiedler Vector

The first non-null eigenvalue A\;. 1 is called the Fiedler value.

The corresponding eigenvector uy. 1 1s called the Fiedler
vector.

The multiplicity of the Fiedler eigenvalue is always equal to 1.

The Fiedler value is the algebraic connectivity of a graph, the
further from 0, the more connected.

The Fidler vector has been extensively used for spectral
bi-partioning

Theoretical results are summarized in Spielman & Teng 2007:
http://cs—-www.cs.yale.edu/homes/spielman/
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Laplacian Eigenvectors for Connected Graphs

U1 — ]_n,Lln = 0.

uo 1s the the Fiedler vector with multiplicity 1.

The eigenvectors form an orthonormal basis: u

T

i Uj = 0ij.

For any eigenvector u; = (u;(v1) ... u;(v,)) ', 2 <i < n:

u;rln =0

Hence the components of u;, 2 < i < n satisfy:

Z ’U@(?)j) =0
7=1

Each component is bounded by:

—1 < ui(vj) <1

A, = algebraic
connectivity,

monotone under graph
inclusion



Some Special Graphs

e The complete graph on n vertices, K,,, which has edge set {(u,v) : u # v}.
e The star graph on n vertices, S,, which has edge set {(1,u) : 2 < u < n}.

e The hypercube

The hypercube on 2X vertices. The vertices are elements of {0,1}¥.
Edges exist between vertices that differ in only one coordinate.



Complete Graph

Lemma 2.5.1. The Laplacian of K, has eigenvalue 0 with multiplicity 1 and n with multiplicity
n — 1.

Proof. To compute the non-zero eigenvalues, let 9 be any non-zero vector orthogonal to the all-1s
vector, so

> (u)=0. (2.6)

We now compute the first coordinate of Ly, 1. Using (2.3), we find

(L, %) (1) = Y _(#(1) =9 (v)) = (n — (1) — wau =ny(1), by (2.6).
v>2
As the choice of coordinate was arbitrary, we have Li) = nt). So, every vector orthogonal to the

all-1s vector is an eigenvector of eigenvalue n. ]

Alternative approach. Observe that Ly, = nI — 117, O]



Star Graph

Lemma 2.5.2. Let G = (V,E) be a graph, and let v and w be vertices of degree one that are both
connected to another verter z. Then, the vector ¥ = d, — d,, is an eigenvector of Lg of eigenvalue
1.

Proof. Just multiply Lg by 1, and check vertex-by-vertex that it equals ). [

As eigenvectors of different eigenvalues are orthogonal, this implies that 1 (u) = (v) for every
eigenvector with eigenvalue different from 1.

Lemma 2.5.3. The graph S,, has eigenvalue 0 with multiplicity 1, eigenvalue 1 with multiplicity
n — 2, and eigenvalue n with multiplicity 1.



Hypercube Graph

 Exercise



