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MESH SMOOTHING
(AKA DENOISING, FILTERING, FAIRING)

UCSan Diego




Mesh Smoothing

* Input: Noisy mesh (scanned or other)
* Qutput: Smooth mesh
* How: Filter out high frequency noise




Smoothing by Filtering

Fourier Transform
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Smoothing by Filtering

Fourier Transform

Filtering
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Filtering on a Mesh

Filtering
[Taubin 995]

Geometric space




Laplacian Smoothing

* An easier problem: How to smooth a curve?
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Laplacian Smoothing

* An easier problem: How to smooth a curve?
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Finite difference
discretization of second . .
derivative —> L@)=5 (Pu—P )5 (PP
= Laplace operator in 2 2
one dimension




Laplacian Smoothing

Algorithm:
Repeat for m iterations (for non boundary points):

P, <—P;+AL(p;)

For which A?
O<A<l1

Closed curve converges to?
Single point



Spectral Analysis

 Closed curve

Re-write p{*)=p!+AL(p{’)
1 1

L(p,-)=5(p,-+1—p,-)+5(p,-_1—p,-)

in matrix notation: P**) —p®) _\L,p®
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The Eigenvectors of L

L=VDV’
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Lemma 5.3.1. The Laplacian of R, has eigenvectors

zi(u) = cos(2rku/n), and
yi(u) = sin(2mku/n),

for 0 < k < n/2, ignoring y, which is the all-zero vector, and for even m ignoring Yn/2 for the
same reason. Figenvectors xy, and y; have eigenvalue 2 — 2 cos(2mk/n).

http://www.cs.yale.edu/homes/spielman/561/2012/lect05-12.pdf



http://www.cs.yale.edu/homes/spielman/561/2012/lect05-12.pdf
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Spectral Analysis
Then: P =p® _\LPY =(1-AL)P"

After m iterations: P =(I-AL)" P

Can be described using eigen- Filtering high
decomposition Of L frequencies
L=VDV’
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Laplacian Smoothing on Meshes

Same as for curves:

pgt+1) :pgt) FAA pgt)
N,= {km,n}
p,= (x, ¥ 2)
What is Ap, ? 4} .
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Laplacian Smoothing on Meshes

O Iterations 5 lterations 20 [terations



Laplacian Smoothing

(++1)

p,"=p;+AAp]
Ap, = mean curvature normal

l

mean curvature flow



Laplace Operator Discretization

« Sanity check — what should happen if the mesh lies

xl'a yp())?

the plane: p;, = (
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Laplace Operator Discretization

should

th,
ing

— A flat mesh is smoo

Not good

stay the same after smooth
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Laplace Operator Discretization

Not good — The result should not depend on
triangle sizes
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From Desbrun et al., Siggraph 1999



What Went Wrong?

Back to curves:

1

2

Same weight for both neighbors,
although one is closer
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The Solution (1D)

Use a weighted average to define A
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Which weights? —o e
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Straight curves will be invariant to smoothing



Solution (2D)

Use a weighted average to define A
Which weights? N~ tktmr)
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Planar meshes will be invariant to smoothing



Smoothing with the Cotangent Laplacian
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From Desbrun et al., Siggraph 1999



The Eigenvectors of L
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Spectral Analysis

« Cotangent Laplacian

L=VDV’ V=

Demo

From Vallet et al., Eurographics 2008



Smoothing using the Laplacian Eigen-
decomposition
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