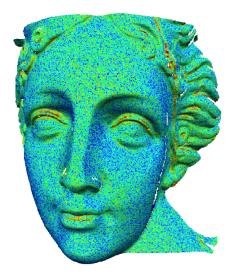


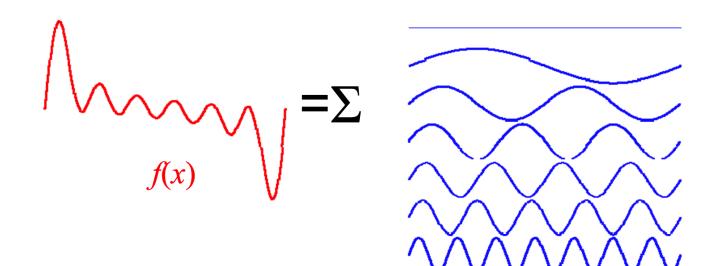
Laplacian Basics (Smoothing, Cotangent Laplacian)


Instructor: Hao Su

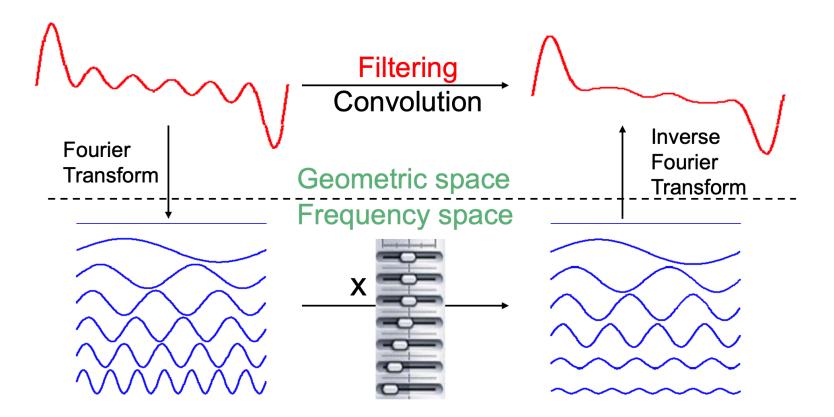
UC San Diego

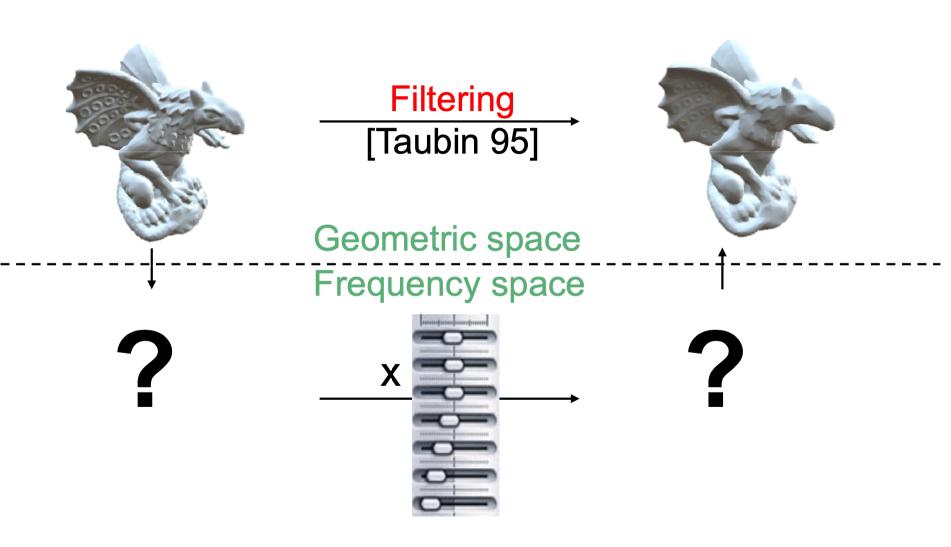
MESH SMOOTHING (AKA DENOISING, FILTERING, FAIRING)

Mesh Smoothing

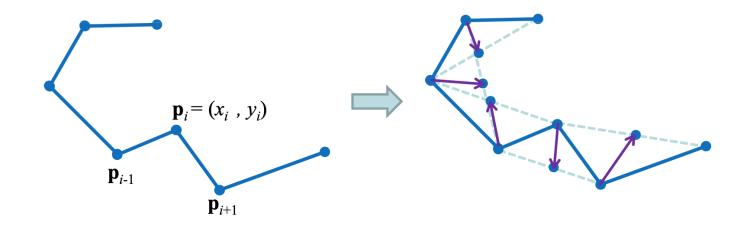

- Input: Noisy mesh (scanned or other)
- Output: Smooth mesh
- How: Filter out high frequency noise

Smoothing by Filtering

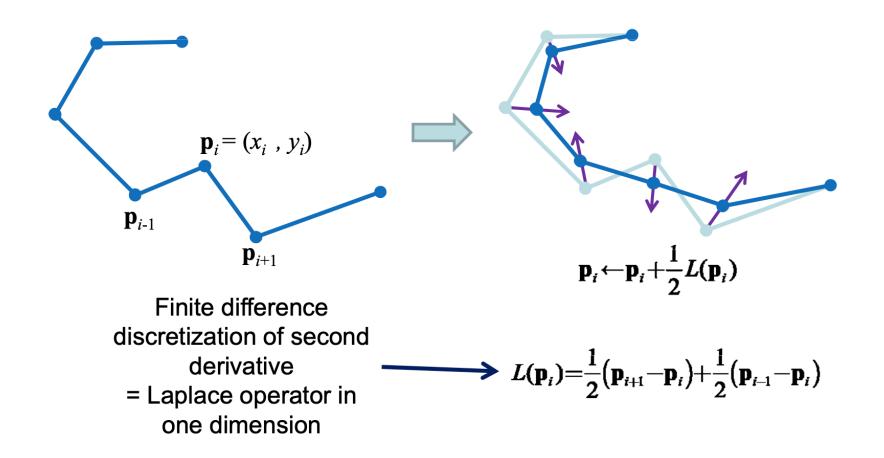

Fourier Transform


sin(kx)

Smoothing by Filtering


Fourier Transform

Filtering on a Mesh



• An easier problem: How to smooth a curve?

$$(\mathbf{p}_{i-1} + \mathbf{p}_{i+1})/2 - \mathbf{p}_i$$
$$L(\mathbf{p}_i) = \frac{1}{2} (\mathbf{p}_{i+1} - \mathbf{p}_i) + \frac{1}{2} (\mathbf{p}_{i-1} - \mathbf{p}_i)$$

• An easier problem: How to smooth a curve?

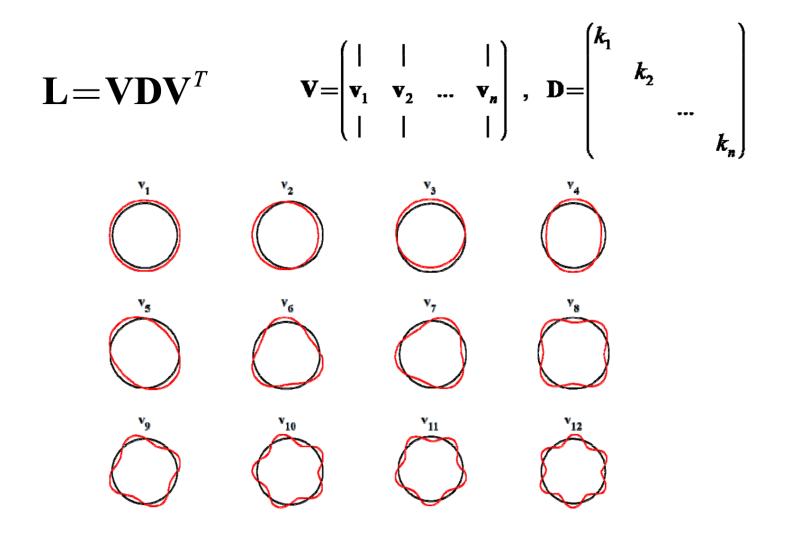
<u>Algorithm:</u> Repeat for *m* iterations (for non boundary points):

 $\mathbf{p}_i \leftarrow \mathbf{p}_i + \lambda L(\mathbf{p}_i)$

For which λ ? $0 < \lambda < 1$

Closed curve converges to? Single point

Spectral Analysis


Closed curve

Re-write
$$\mathbf{p}_{i}^{(t+1)} = \mathbf{p}_{i}^{(t)} + \lambda L(\mathbf{p}_{i}^{(t)})$$

 $L(\mathbf{p}_{i}) = \frac{1}{2}(\mathbf{p}_{i+1} - \mathbf{p}_{i}) + \frac{1}{2}(\mathbf{p}_{i-1} - \mathbf{p}_{i})$

in matrix notation: $\mathbf{P}^{(t+1)} = \mathbf{P}^{(t)} - \lambda \mathbf{L} \mathbf{P}^{(t)}$

$$\mathbf{P} = \begin{pmatrix} x_1 & y_2 \\ \dots & \dots \\ x_n & y_n \end{pmatrix} \in \mathbb{R}^{n \times 2} \quad \mathbf{L} = \frac{1}{2} \begin{pmatrix} 2 & -1 & & & -1 \\ -1 & 2 & -1 & & \\ & & \dots & & \\ & & & -1 & 2 & -1 \\ -1 & & & & -1 & 2 \end{pmatrix} \in \mathbb{R}^{n \times n}$$

The Eigenvectors of \boldsymbol{L}

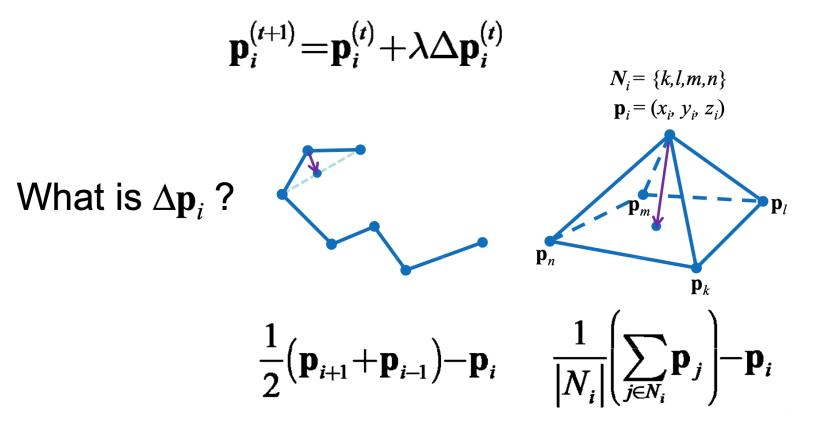
$0 \le \lambda(L) \le 2$

Lemma 5.3.1. The Laplacian of R_n has eigenvectors

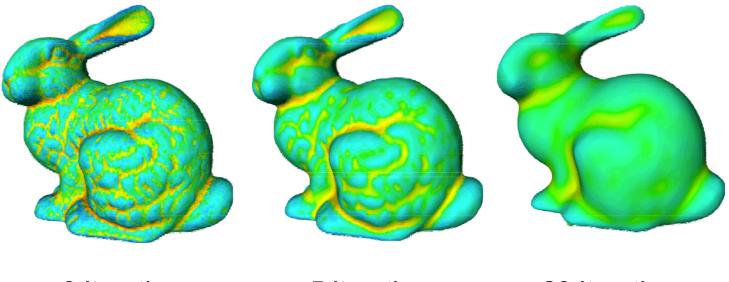
 $egin{aligned} oldsymbol{x}_k(u) &= \cos(2\pi k u/n), \ and \ oldsymbol{y}_k(u) &= \sin(2\pi k u/n), \end{aligned}$

for $0 \le k \le n/2$, ignoring \mathbf{y}_0 which is the all-zero vector, and for even n ignoring $\mathbf{y}_{n/2}$ for the same reason. Eigenvectors \mathbf{x}_k and \mathbf{y}_k have eigenvalue $2 - 2\cos(2\pi k/n)$.

Spectral Analysis


Then:
$$\mathbf{P}^{(t+1)} = \mathbf{P}^{(t)} - \lambda \mathbf{L} \mathbf{P}^{(t)} = (\mathbf{I} - \lambda \mathbf{L}) \mathbf{P}^{(t)}$$

After *m* iterations:
$$\mathbf{P}^{(m)} = (\mathbf{I} - \lambda \mathbf{L})^m \mathbf{P}^{(0)}$$


Can be described using eigendecomposition of L $\mathbf{L} = \mathbf{V} \mathbf{D} \mathbf{V}^{T}$ $\mathbf{V} = \begin{pmatrix} I & I & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & I \\ I & I & I \end{pmatrix}, \mathbf{$

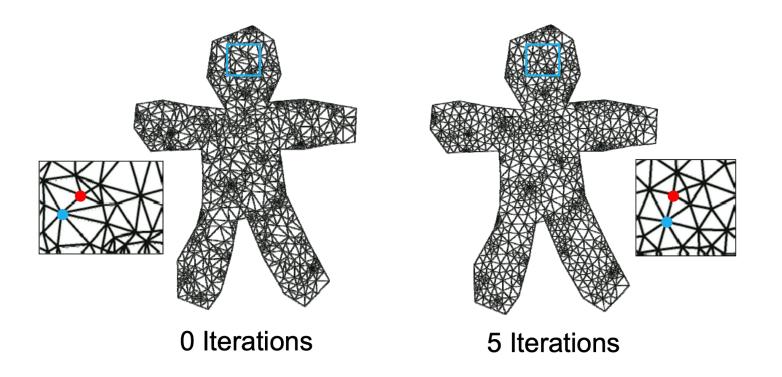
Laplacian Smoothing on Meshes

Same as for curves:

Laplacian Smoothing on Meshes

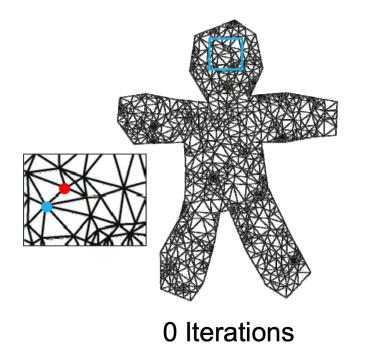
0 Iterations

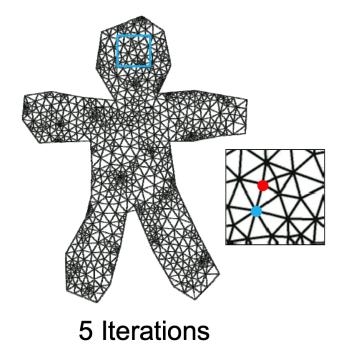
5 Iterations


20 Iterations

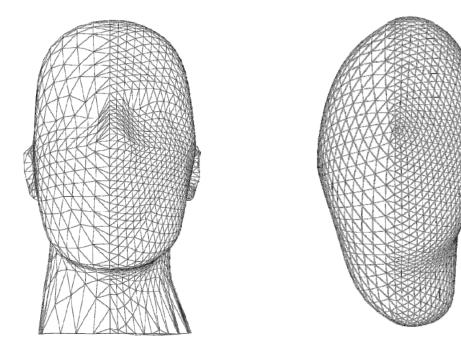
$$\mathbf{p}_i^{(t+1)} = \mathbf{p}_i^{(t)} + \lambda \Delta \mathbf{p}_i^{(t)}$$

$\Delta \mathbf{p}_i$ = mean curvature normal

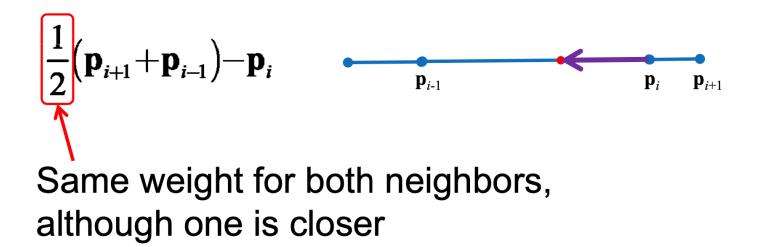

Laplace Operator Discretization


• Sanity check — what should happen if the mesh lies in the plane: $p_i = (x_i, y_i, 0)$?

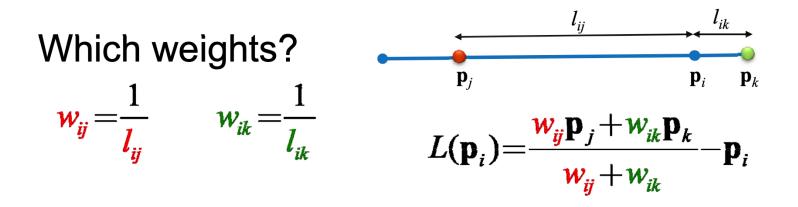
Laplace Operator Discretization


Not good – A flat mesh is smooth, should stay the same after smoothing

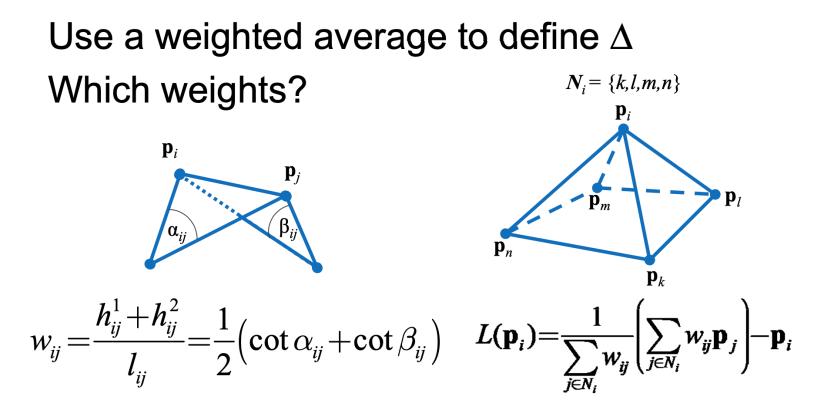
Laplace Operator Discretization


Not good – The result should not depend on triangle sizes

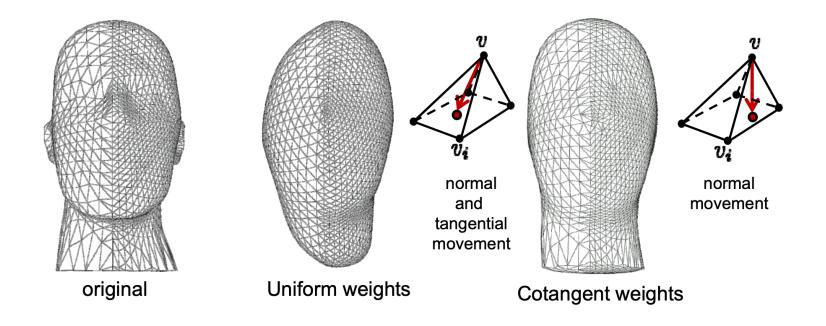
From Desbrun et al., Siggraph 1999


What Went Wrong?

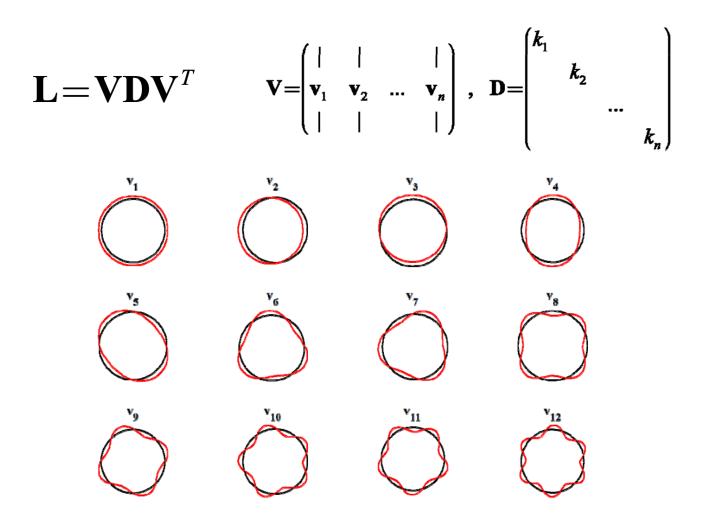
Back to curves:


The Solution (1D)

Use a weighted average to define Δ

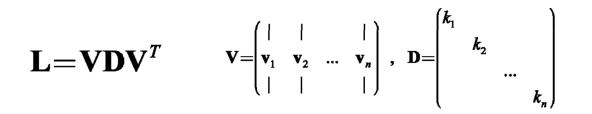

Straight curves will be invariant to smoothing

Solution (2D)



Planar meshes will be invariant to smoothing

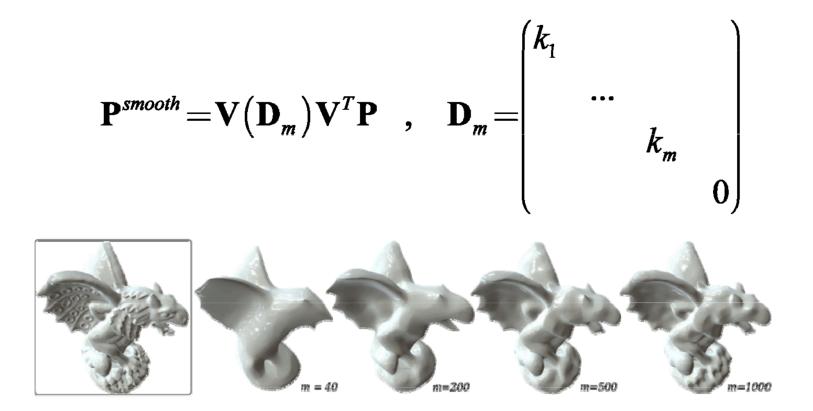
Smoothing with the Cotangent Laplacian



The Eigenvectors of L

Spectral Analysis

Cotangent Laplacian



Demo

From Vallet et al., Eurographics 2008

Smoothing using the Laplacian Eigendecomposition

