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Geodesic Distances




Geodesic distance
|ee-uh-des-ik dis-tuh-ns].

_ength of the shortest path,
constrained not to leave the
manifold.




Complicated Problem

L ocal minima



Related Queries
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https://www.ceremade.dauphine.fr/~peyre/teaching/manifold/tp3.html http://www.sciencedirect.com/science/article/pii/SO0 104485 | 100226/




Computer Scientists’ Approach
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http://www.cse.ohio-state.edu/~tamaldey/isotopic.html

Meshes are graphs



Pernicious Test Case






Pernicious Test Case




Distances




Conclusion 1

Graph shortest-path
does not converge to

geodesic distance.
Often an acceptable

approximaﬁon.



Conclusion 2

Geodesic distances need
special discretization.

So, we need to understand the theory!

\begin{math}



Three Possible Definitions
 Globally shortest path

 Local minimizer of length

 Locally straight path




Recal: Arc Length

[

v (t)

dt



Energy of a Curve

L) = / Iy (1)]] dt
E aaier to work with:

Ep)i= g [ W) d

Lemma: L* <2(b—a)FE

Equality exactly when parameterized by arc length. Proof on board.









First Variation of Arc Length

Lemma. Let 7 be a family of curves with fixed
endpoints in surface S;assume 7 is parameterized by
arc length at t=0. Then,

e == [ (2 proir, s b))

dt

Corollary. 7 is a geodesic iff




Intuition

* The only acceleration is out of the surface
* No steering wheel!

PTOJTW(S)S 7' (s)] =




Two Local Perspectives

PTOJTW(S)S 7"(s)] =0

Boundary value problem
Given: y(0),y(1)

Initial value problem (ODE)
Given: y(0),y'(0)



Instability of Geodesics

http://parametricwood201 | files.wordpress.com/201 1/0 | /cone-with-three-geodesics.png



\end{math}



Starting Point for Algorithms

Graph shortest path algorithms are
well-understood.

Can we use them (carefully) to compute geodesics?



Useful Principles

“Shortest path had to
come from somewhere.”

“All pieces of a shortest path
are optimal.”



Dijkstra’s Algorithm

Vo = Source vertex
d; = Current distance to vertex 2

S = Vertices with known optimal distance

Initialization:
dog = 0

S =17



Dijkstra’s Algorithm

Vo = Source vertex
d; = Current distance to vertex 2

S = Vertices with known optimal distance

Iteration k:

k =arg min dy
v, €EV\S

S < Vi
dy < min{dy, di + di¢} V neighbors vy of vy

During each iteration, $
remains optimal.



Advancing Fronts

CS 468, 2009




Example
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Fast Marching

Dijkstra’s algorithm, modified to
approximate geodesic distances.



Problem



Planar Front Approximation




At Local Scale




Fast Marching vs. Dijkstra
* Modified update step

* Update all triangles adjacent
to a given vertex



Fast Marching Algorithm

. At Xx; and x, stores the
shortest paths d; and d,

. Question: shortest path d; at
A3

/
"4  Source point



Fast Marching Algorithm

* Solution:

 On the plane containing
/\ Xx;%,x3, build a “virtual’
source point

\\ I
\J}

o

Virtual source point



Modifying Fast Marching

Bronstein, Numerical Geometry of Nonrigid Shapes

Grids and parameterized surfaces



Tracing Geodesic Curves

Trace gradient of distance function



Practical Implementation

Fast Exact and Approximate Geodesics on Meshes

Vitaly Surazhsky

University of Oslo

Tatiana Surazhsky

University of Oslo

Abstract

The computation of geodesic paths and distances on triangle
meshes 1s a common operation in many computer graphics applica-
tions. We present several practical algorithms for computing such
geodesics from a source point to one or all other points efficiently.
First. we describe an implementation of the exact “single source,
all destination™ algorithm presented by Mitchell. Mount, and Pa-
padimitriou (MMP). We show that the algorithm runs much faster
in practice than suggested by worst case analysis. Next, we extend
the algonithm with a merging operation to obtain computationally
efficient and accurate approximations with bounded error. Finally.
to compute the shortest path between two given points, we use a
lower-bound property of our approximate geodesic algorithm to ef-
ficiently prune the frontier of the MMP algorithm, thereby obtain-
ing an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction

In this paper we present practical methods for computing both exact
and approximate shortest (1.e. geodesic) paths on a triangle mesh.
These geodesic paths typically cut across faces in the mesh and are
therefore not found by the traditional graph-based Dijkstra algo-
rithm for shortest paths.

The computation of geodesic paths is a common operation in many
computer graphics applications. For example, parameterizing a
mesh often involves cutting the mesh into one or more charts
(e.g. [Krishnamurthy and Levoy 1
the result generally has less distorti|
if the cuts are geodesic. Geodesic
intn cuhnad i [ on
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Figure 1: Geodesic paths from a source vertex, and isolines of the
geodesic distance function.

tance function over the edges, the implementation is actually prac-
tical even though. fo our knowledge, it has never been done pre-
viously. We demonstrate that the algorithm’s worst case running
time of O(n” logn) is pessimistic. and that in practice. the algo-
rithm runs in sub-quadratic fime. For instance, we can compute
the exact geodesic distance from a source point to all vertices of a
400K-triangle mesh in about one minute.

Approximation algorithm We extend the algorithm with a merg-
ing operation to obfain computationally efficient and accurate ap-
proximations with bounded error. In practice, the algorithm runs in




All-Pairs Distances

Query (planar

Sample points Geodesic field  Triangulate Fix edges embedding)

(Delaunay)

Xin,Ying, and He. “Constant-time all-pairs geodesic distance query on triangle meshes.” 13D
2012.



Geodesic Voronoi & Delaunay

N = 10000 samples Triangulation

Fig. 4.12 Geodesic remeshing with an increasing number of poinls.

From Geodesic Methods in Computer Vision and Graphics (Peyré et al., FnT 2010)



