UCSanDiego

Geodesics

Instructor: Hao Su

Geodesic Distances

Geodesic distance

[jee-uh-des-ik dis-tuh-ns]:
Length of the shortest path, constrained not to leave the manifold.

Complicated Problem

Straightest Geodesics on Polyhedral Surfaces (Polthier and Schmies)
Local minima

$$
\frac{0}{2}
$$

Computer Scientists' Approach

Meshes are graphs

Pernicious Test Case

Pernicious Test Case

Pernicious Test Case

Distances

Conclusion 1

Graph shortest-path does not converge to geodesic distance.
 Often an acceptable
 approximation.

Conclusion 2

Geodesic distances need special discretization.

So, we need to understand the theory!

\begin\{math\}

}
Three Possible Definitions

- Globally shortest path
- Local minimizer of length
- Locally staraight path

Recall: Arc Length

$\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t$

Energy of a Curve

$$
L[\gamma]:=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t
$$

Easier to work with:

$$
E[\gamma]:=\frac{1}{2} \int_{a}^{b}\left\|\gamma^{\prime}(t)\right\|^{2} d t
$$

Lemma: $L^{2} \leq 2(b-a) E$

Equality exactly when parameterized by arc length. Proof on board.

$$
\begin{aligned}
\mathbb{E}[r] & =\frac{1}{2} \int_{a}^{b}\left(\frac{d r_{t}(s)}{d s}\right)^{2} \cdot d s \\
\frac{d}{d t} E\left[r_{t}\right] & =\int_{a}^{b} \frac{\partial r_{t}(s)}{\partial s} \cdot \frac{\partial^{2} r_{t}(s)}{\partial t \partial s} \cdot d s
\end{aligned}
$$

note:

$$
\begin{aligned}
& \frac{\partial}{\partial s}\left\langle\frac{\partial r}{\partial s}, \frac{\partial r}{\partial t}\right\rangle \\
= & \left\langle\frac{\partial^{2} r}{\partial s^{2}}, \frac{\partial^{2} r}{\partial t}\right\rangle+\left\langle\frac{\partial r}{\partial s}, \frac{\partial^{2} r}{\partial s \partial t}\right\rangle
\end{aligned}
$$

By parametration,

$$
\begin{aligned}
& \left\langle\frac{\partial r}{\partial s}, \frac{\partial r}{\partial t}\right\rangle \equiv 0 \\
\therefore & \left\langle\frac{\partial r}{\partial s}, \frac{\partial^{2} r}{\partial s \partial t}\right\rangle=-\left\langle\frac{\partial^{2} r}{\partial s^{2}}, \frac{\partial^{\prime} r}{\partial t}\right\rangle
\end{aligned}
$$

curve normal curve tangent.

First Variation of Arc Length

Lemma. Let γ be a family of curves with fixed endpoints in surface S; assume γ is parameterized by arc length at $t=0$. Then,

$$
\left.\frac{d}{d t} E\left[\gamma_{t}\right]\right|_{t=0}=-\int_{a}^{b}\left(\frac{d \gamma_{t}(s)}{d t} \cdot \operatorname{proj}_{T_{\gamma_{t}(s) S} S}\left[\gamma_{t}^{\prime \prime}(s)\right]\right) d s
$$

Corollary. γ is a geodesic iff

$$
\operatorname{proj}_{T_{\gamma(s)} S}\left[\gamma^{\prime \prime}(s)\right]=0
$$

Intuition

- The only acceleration is out of the surface
- No steering wheel!

$$
\operatorname{proj}_{T_{\gamma(s)} S}\left[\gamma^{\prime \prime}(s)\right]=0
$$

Two Local Perspectives

$$
\operatorname{proj}_{T_{\gamma(s) S}}\left[\gamma^{\prime \prime}(s)\right]=0
$$

- Boundary value problem
- Given: $\boldsymbol{\gamma}(\mathbf{0}), \boldsymbol{\gamma}(\mathbf{1})$
- Initial value problem (ODE)
- Given: $\boldsymbol{\gamma}(\mathbf{0}), \boldsymbol{\gamma}^{\prime}(\mathbf{0})$

Instability of Geodesics

Locally minimizing distance is not enough to be a shortest path!
\end\{math \} }

Starting Point for Algorithms

Graph shortest path algorithms are well-understood.

Can we use them (carefully) to compute geodesics?

Useful Principles

"Shortest path had to come from somewhere."

"All pieces of a shortest path are optimal."

Dijkstra's Algorithm

$v_{0}=$ Source vertex
$d_{i}=$ Current distance to vertex i
$S=$ Vertices with known optimal distance

Initialization:

$$
\begin{aligned}
d_{0} & =0 \\
d_{i} & =\infty \forall i>0 \\
S & =\{ \}
\end{aligned}
$$

Dijkstra's Algorithm

$v_{0}=$ Source vertex
$d_{i}=$ Current distance to vertex i
$S=$ Vertices with known optimal distance

$$
\begin{aligned}
& k \quad \arg \min _{v_{k} \in V \backslash S} d_{k} \\
& S \leftarrow v_{k} \\
& d_{\ell} \leftarrow \min \left\{d_{\ell}, d_{k}+d_{k \ell}\right\} \forall \text { neighbors } v_{\ell} \text { of } v_{k} \\
& \text { Inductive } \begin{array}{l}
\text { During each iteration, } S \\
\text { proof: }
\end{array} \\
& \quad \text { remains optimal. }
\end{aligned}
$$

Advancing Fronts

Example

Fast Marching

Dijkstra's algorithm, modified to approximate geodesic distances.

Problem

Planar Front Approximation

At Local Scale

Fast Marching vs. Dijkstra

- Modified update step
- Update all triangles adjacent to a given vertex

Fast Marching Algorithm

- At x_{1} and x_{2} stores the shortest paths d_{1} and d_{2}
- Question: shortest path d_{3} at x_{3}

Fast Marching Algorithm

- Solution:
- On the plane containing $\triangle x_{1} x_{2} x_{3}$, build a "virtual" source point

Virtual source point

Modifying Fast Marching

Bronstein, Numerical Geometry of Nonrigid Shapes

Grids and parameterized surfaces

Tracing Geodesic Curves

Trace gradient of distance function

Practical Implementation

Fast Exact and Approximate Geodesics on Meshes

Vitaly Surazhsky Tatiana Surazhsky
University of Oslo
University of Oslo

Danil Kirsanov
Harvard University

Steven J. Gortler
Harvard University

Hugues Hoppe
Microsoft Research

Abstract

The computation of geodesic paths and distances on triangle meshes is a common operation in many computer graphics applications. We present several practical algorithms for computing such geodesics from a source point to one or all other points efficiently. First, we describe an implementation of the exact "single source, all destination" algorithm presented by Mitchell, Mount, and Papadimitriou (MMP). We show that the algorithm runs much faster in practice than suggested by worst case analysis. Next, we extend the algorithm with a merging operation to obtain computationally efficient and accurate approximations with bounded error. Finally, to compute the shortest path between two given points, we use a lower-bound property of our approximate geodesic algorithm to efficiently prune the frontier of the MMP algorithm, thereby obtaining an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction

In this paper we present practical methods for computing both exact and approximate shortest (i.e. geodesic) paths on a triangle mesh. These geodesic paths typically cut across faces in the mesh and are therefore not found by the traditional graph-based Dijkstra algorithm for shortest paths.
The computation of geodesic paths is a common operation in many computer graphics applications. For example, parameterizing a mesh often involves cutting the mesh into one or more charts

Figure 1: Geodesic paths from a source vertex, and isolines of the geodesic distance function.
tance function over the edges, the implementation is actually practical even though, to our knowledge, it has never been done previously. We demonstrate that the algorithm's worst case running time of $O\left(n^{2} \log n\right)$ is pessimistic, and that in practice, the algorithm runs in sub-quadratic time. For instance, we can compute the exact geodesic distance from a source point to all vertices of a 400 K -triangle mesh in about one minute.
Approximation algorithm We extend the algorithm with a merging operation to obtain computationally efficient and accurate approximations with bounded error. In practice, the algorithm runs in (e.g. [Krishnamurthy and Levoy 1 the result generally has less distorti if the cuts are geodesic. Geodesic moch into cubments ac done in \mathbb{K} nt

All-Pairs Distances

Sample points Geodesic field

Triangulate
(Delaunay)

Query (planar embedding)

Xin,Ying, and He. "Constant-time all-pairs geodesic distance query on triangle meshes." I3D 2012.

Geodesic Voronoi \& Delaunay

Fig. 4.12 Geodesic remeshing with an increasing number of points.
From Geodesic Methods in Computer Vision and Graphics (Peyré et al., FnT 20I0)

