Geodesics

Instructor: Hao Su
Geodesic Distances

Extrinsically close

Intrinsically far

Extrinsically close
Geodesic distance

[jee-uh-des-ik dis-tuh-ns]:
Length of the shortest path, constrained not to leave the manifold.
Complicated Problem

Local minima

Straightest Geodesics on Polyhedral Surfaces (Polthier and Schmies)
Related Queries

Locally OK

Single source

Multi-source

All-pairs
Computer Scientists’ Approach

Meshes are graphs

Approximate geodesics as paths along edges

http://www.cse.ohio-state.edu/~tamaldey/isotopic.html

Meshes are graphs
Pernicious Test Case
Pernicious Test Case
Pernicious Test Case
Distances

\[\ell = \sqrt{2} \]

\[\ell = 2 \]
Conclusion 1

Graph shortest-path does not converge to geodesic distance. Often an acceptable approximation.
Geodesic distances need special discretization.

So, we need to understand the theory!
Three Possible Definitions

- Globally shortest path
- Local minimizer of length
- Locally straight path

Not the same!
Recall: Arc Length

\[\int_{a}^{b} \| \gamma'(t) \| \, dt \]
Energy of a Curve

\[L[\gamma] := \int_a^b \| \gamma'(t) \| \, dt \]

Easier to work with:

\[E[\gamma] := \frac{1}{2} \int_a^b \| \gamma'(t) \|^2 \, dt \]

Lemma: \(L^2 \leq 2(b - a)E \)

Equality exactly when parameterized by arc length. Proof on board.
\[E[r] = \frac{1}{2} \int_a^b \left(\frac{d\gamma_t(s)}{ds} \right)^2 ds \]

\[\frac{d}{dt} E[r_t] = \int_a^b \frac{\partial \gamma_t(s)}{\partial s} \cdot \frac{\partial^2 \gamma_t(s)}{\partial s \partial t} ds \]

Note:

\[\frac{\partial}{\partial s} \left< \frac{d\gamma}{ds}, \frac{d\gamma}{dt} \right> = \left< \frac{d^2\gamma}{ds^2}, \frac{\partial^2 \gamma}{\partial s \partial t} \right> + \left< \frac{\partial \gamma}{\partial s}, \frac{\partial^2 \gamma}{\partial s \partial t} \right> \]

By parameterization,

\[\left< \frac{dr}{ds}, \frac{dr}{dt} \right> \equiv 0 \]

\[\therefore \left< \frac{dr}{ds}, \frac{\partial^2 \gamma}{\partial s \partial t} \right> = -\left< \frac{\partial \gamma}{\partial s}, \frac{\partial \gamma}{\partial t} \right> \]

curve normal curve tangent.
Lemma. Let \(\gamma \) be a family of curves with fixed endpoints in surface \(S \); assume \(\gamma \) is parameterized by arc length at \(t=0 \). Then,

\[
\frac{d}{dt} E[\gamma_t] \bigg|_{t=0} = - \int_a^b \left(\frac{d\gamma_t(s)}{dt} \cdot \text{proj}_{T_{\gamma_t(s)}S} [\gamma''(s)] \right) ds
\]

Corollary. \(\gamma \) is a geodesic iff

\[
\text{proj}_{T_{\gamma(s)}S} [\gamma''(s)] = 0
\]
Intuition

- The only acceleration is out of the surface
- No steering wheel!

\[
\text{proj}_{T_{\gamma(s)}} S [\gamma''(s)] = 0
\]
Two Local Perspectives

\[\text{proj}_{T_{\gamma(s)}} S \left[\gamma''(s) \right] = 0 \]

- **Boundary value problem**
 - Given: \(\gamma(0), \gamma(1) \)

- **Initial value problem (ODE)**
 - Given: \(\gamma(0), \gamma'(0) \)
Instability of Geodesics

Locally minimizing distance is not enough to be a shortest path!
\end{math}
Starting Point for Algorithms

Graph shortest path algorithms are well-understood.

Can we use them (carefully) to compute geodesics?
Useful Principles

“Shortest path had to come from somewhere.”

“All pieces of a shortest path are optimal.”
Dijkstra’s Algorithm

Initialization:

\[v_0 = \text{Source vertex} \]
\[d_i = \text{Current distance to vertex } i \]
\[S = \text{Vertices with known optimal distance} \]

\[d_0 = 0 \]
\[d_i = \infty \quad \forall i > 0 \]
\[S = \{ \} \]
Dijkstra’s Algorithm

\(v_0 = \text{Source vertex} \)
\(d_i = \text{Current distance to vertex } i \)
\(S = \text{Vertices with known optimal distance} \)

Iteration \(k \):

\[k = \arg \min_{v_k \in V \setminus S} d_k \]

\(S \leftarrow v_k \)

\(d_\ell \leftarrow \min \{ d_\ell, d_k + d_{k\ell} \} \ \forall \text{ neighbors } v_\ell \text{ of } v_k \)

Inductive proof: During each iteration, \(S \) remains optimal.
Advancing Fronts
Example
Fast Marching

Dijkstra’s algorithm, modified to approximate geodesic distances.
Problem
Planar Front Approximation

Source point

Front looks flat!
At Local Scale
Fast Marching vs. Dijkstra

- Modified update step

- Update all triangles adjacent to a given vertex
Fast Marching Algorithm

- At x_1 and x_2 stores the shortest paths d_1 and d_2
- Question: shortest path d_3 at x_3
Fast Marching Algorithm

- Solution:
- On the plane containing \(\triangle x_1x_2x_3 \), build a “virtual” source point

Virtual source point
Modifying Fast Marching Grids and parameterized surfaces

Raster scan and/or parallelize

Grids and parameterized surfaces

Bronstein, Numerical Geometry of Nonrigid Shapes
Tracing Geodesic Curves

Trace gradient of distance function
Practical Implementation

Fast Exact and Approximate Geodesics on Meshes

Vitaly Surazhsky
University of Oslo
Tatiana Surazhsky
University of Oslo
Danil Kirsanov
Harvard University
Steven J. Gortler
Harvard University
Hugues Hoppe
Microsoft Research

Abstract
The computation of geodesic paths and distances on triangle meshes is a common operation in many computer graphics applications. We present several practical algorithms for computing such geodesics from a source point to one or all other points efficiently. First, we describe an implementation of the exact “single source, all destination” algorithm presented by Mitchell, Mount, and Papadimitriou (MMP). We show that the algorithm runs much faster in practice than suggested by worst case analysis. Next, we extend the algorithm with a merging operation to obtain computationally efficient and accurate approximations with bounded error. Finally, to compute the shortest path between two given points, we use a lower-bound property of our approximate geodesic algorithm to efficiently prune the frontier of the MMP algorithm, thereby obtaining an exact solution more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction
In this paper we present practical methods for computing both exact and approximate shortest (i.e. geodesic) paths on a triangle mesh. These geodesic paths typically cut across faces in the mesh and are therefore not found by the traditional graph-based Dijkstra algorithm for shortest paths.

The computation of geodesic paths is a common operation in many computer graphics applications. For example, parameterizing a mesh often involves cutting the mesh into one or more charts (e.g. [Krishnamurthy and Levoy 1996; Sander et al. 2003]), and the result generally has less distortion and is more distortionless if the cuts are geodesic. Geodesic paths are also used in remeshing a mesh into subparts, as done in [Kazhdan and Hoppe 2003].

Figure 1: Geodesic paths from a source vertex, and isolines of the geodesic distance function.

http://code.google.com/p/geodesic/
All-Pairs Distances

Xin, Ying, and He. “Constant-time all-pairs geodesic distance query on triangle meshes.” I3D 2012.
Geodesic Voronoi & Delaunay

Fig. 4.12 Geodesic remeshing with an increasing number of points.

From Geodesic Methods in Computer Vision and Graphics (Peyré et al., FnT 2010)