

Deep Learning on Extrinsic Geometry

Instructor: Hao Su

slides credits: Justin Solomon, Chengcheng Tang

Thu of 3rd week (week of Jan 20): Announcement of projects and start to form project teams

Tue of 4th week (week of Jan 27): Due of casting votes on projects for each team

Thu of 4th week (week of Jan 27): Announcement of project-group alignment

Thu of 5th week (week of Feb 3): Work plan (1 page, template provided)

Thu of 8th week (week of Feb 24): Mid-term report (3 pages, template provided)

Tue/Thu of 10th week (week of Mar 9): Final presentation (15 minutes for each team)

Thu of 11th week (week Mar 16): Final report write-up (6 pages, template provided)

Set comparison

Given two sets of points, measure their discrepancy

Set comparison

Given two sets of points, measure their discrepancy • Key challenge: correspondence problem

Correspondence (I): optimal assignment

Correspondence (II): closest point

Distance metrics affect mean shapes

The mean shape carries characteristics of the distance metric

continuous
nidden variable
(radius)
$$\bar{x} = \underset{x}{\operatorname{argmin}} \mathbb{E}_{s \sim \mathbb{S}}[d(x, s)]$$

Input EMD mean Chamfer mean CVPR '17, Point Set Generation

Mean shapes from distance metrics

The mean shape carries characteristics of the distance metric

Comparison of predictions by EMD versus CD

To be used as a loss function, the metric has to be

- **Differentiable** with respect to point locations
- Efficient to compute

Differentiable with respect to point location

Chamfer distance

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

Earth Mover's distance

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} ||x - \phi(x)||_2$$
 where $\phi: S_1 \to S_2$ is a bijection.

- Simple function of coordinates
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence does not change

Conclusion: differentiable almost everywhere

• **Differentiable** with respect to point location

 an infinitesimal change to model parameters (almost) does not change solution structure,

leads to differentiable a.e.!

ere

• Efficient to compute

Chamfer distance: trivially parallelizable on CUDA Earth Mover's distance (optimal assignment):

- We implement a **distributed** approximation algorithm on CUDA
- Based upon [Bertsekas, 1985], $(1 + \epsilon)$ -approximation

Deep neural network

• A cascade of layers

Deep neural network

Universal function approximator

• A cascade of layers

input

 Each layer conducts a simple transformation (parameterized) CVPR '17, Point Set Generation

Deep neural network

Universal function approximator

• A cascade of layers

input

- Each layer conducts a simple transformation (parameterized)
- Millions of parameters, has to be fitted by many data

Natural statistics of geometry

- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates

Natural statistics of geometry

- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates
- Also some intricate structures

CVPR '17, Point Set Generation

points have high local variation

Review: deconv network

- Output D arrays, e.g., 2D segmentation map
- Common local patterns are learned from data
- Predict locally correlated data well
- Weight sharing reduces the number of params

Review: deconv network

- Output D arrays, e.g., 2D segmentation map
- Common local patterns are learned from data
- Predict locally correlated data well
- Weight sharing reduces the number of params

Prediction of curved 2D surfaces in 3D

• Surface parametrization (2D 3D mapping)

Credit: Discrete Differential Geometry, Crane et al.

Prediction of curved 2D surfaces in 3D

• Surface parametrization (2D 3D mapping)

Credit: Discrete Differential Geometry, Crane et al.

Prediction of curved 2D surfaces in 3D

• Surface parametrization (2D-3D mapping)

coordinate maps

Credit: Discrete Differential Geometry, Crane et al.

Parametrization prediction by deconv network

Parametrization prediction by deconv network

Parametrization prediction by deconv network

Visualization of the learned parameterization

• Surface parametrization (2D 3D mapping)

Observation:

- Learns a smooth parametrization
- Because deconv net tends to predict data with local correlation

map of x coord map of y coord map of z coord

Visualization of the learned parameterization

• Surface parametrization (2D 3D mapping)

Observation:

- Learns a smooth parametrization
- Because deconv net tends to predict data with local correlation

 (x_k, y_k, z_k)

map of x coord map of y coord map of z coord

Natural statistics of geometry

- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates
- Also some intricate structures

Visualization of the effect of FC branch

• Surface parametrization (2D 3D mapping)

Observation:

The arrangement of predicted points are uncorrelated

x-coord

z-coord

red

Visualization of the effect of FC branch

• Surface parametrization (2D 3D mapping)

and o

Observation:

- The arrangement of predicted points are uncorrelated
- Located at fine structures

Q: Which color corresponds to the deconv branch? FC branch?

Q: Which color corresponds to the deconv branch? FC branch?

blue: deconv branch - large, smooth structures
red: FC branch - intricate structures

CVPR '17, Point Set Generation

Effect of combining two branches

Train/tested on 2K object categories

Real-world results

Generalization to unseen categories

Out of training categories

Extension: shape completion for RGBD data

Generation of Multiple Plausible Shapes

Ambiguity of the prediction arises at test time, the depth for visible parts is under-determined, and the geometry for invisible parts has to be hallucinated by guessing.

Min-of-N Loss (MoN):

$$\underset{\Theta}{\text{minimize}} \quad \sum_{k} \min_{\substack{r_j \sim \mathbb{N}(\mathbf{0}, \mathbf{I}) \\ 1 \leq j \leq n}} \{ d(\mathbb{G}(I_k, r_j; \Theta), S_k^{gt}) \}$$

Min-of-N Loss (MoN)

Figure 4. System structure. By plugging in distributional modeling module, our system is capable of generating multiple predictions.

SURFACE DEFORMATION-BASED RECONSTRUCTION

Comprating points : PointSetGen

Another approach is to sample points on the surface of the 3D shape and work with an

Fan, H., Su, H., & Guibas, L. A point set generation network for 3d object reconstruction from a single image. CVPR 2017

In fact, that's our goal : generating a set of 3D points and the connectivity between

meshes and atlases

Let's try this on an arbitrary shape : me :)

lest Snape

We build on PointSetGen, and its point cloud representation. In its simplest form, the latent

Generating points

results

Key idea 1: deform a surface

We observed that and build on this use a labbing life ply by sampling many points and minimizing decoder architecture the prior Chamfer distance

Key idea 2: learn an atlas

ed object.

/ idea 2: learn an atlas

arnt simply by sampling many points and minimizing Chamfer distance Generated

bes back to the

dea 2: learn an atlas

Learnt simply by sampling many points and minimizing Chamfer distance Generated

NEXT LECTURE: LAPLACIAN

