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Deep Learning on
Extrinsic Geometry

Instructor: Hao Su



Dues

Thu of 3rd week (week of Jan 20): Announcement of projects and start to form project
teams

Tue of 4th week (week of Jan 27): Due of casting votes on projects for each team
Thu of 4th week (week of Jan 27): Announcement of project-group alignment

Thu of 5th week (week of Feb 3): Work plan (1 page, template provided)

Thu of 8th week (week of Feb 24): Mid-term report (3 pages, template provided)
Tue/Thu of 10th week (week of Mar 9): Final presentation (15 minutes for each team)

Thu of 11th week (week Mar 16): Final report write-up (6 pages, template provided)
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Set comparison

Given two sets of points, measure their discrepancy
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Set comparison

Given two sets of points, measure their dis%repancy
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Correspondence (l): optimal assignment

Given two sets of points, measure their discrepancy
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a.k.a Earth Mover’s distance (EMD)
dgmp(S1,S2) = d):gllElSQ Z; |z —@(x)l2 where ¢ : S; — S is a bijection.
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Correspondence (ll): closest point

Given two sets of points, measure their discrepancy
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a.k.a Chamfer distance (CD)
dcp(S1, S2) = Z mm lz — yll5 + Z mm |l — yll3
rES vess” CVPR ’17, Point Set Generation



Distance metrics affect mean shapes

The mean shape carries characteristics of the distance
metric
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Mean shapes from distance metrics

The mean shape carries characteristics of the distance
metric

continuous - IR
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discrete %: i
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Comparison of predictions by EMD versus CD
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Computational requirement of metrics

To be used as a loss function, the metric has to be
« Differentiable with respect to point locations

« Efficient to compute

CVPR ’17, Point Set Generation



Computational requirement of metrics

- Differentiable with respect to point location

Chamfer distance
dop(S1,52) = Z mln |z — yll5 + Z mm lz —yll3

yGS

Earth Mover’s distance
demp(S1,52) = qb:glli_{l& ; |z —¢(z)ll2 where ¢ : S1 — S is a bijection.
€S

- Simple function of coordinates

- In general positions, the correspondence is unique

- With infinitesimal movement, the correspondence
does not change

Conclusion: differentiable almost everywhere



Computational requirement of metrics

Differentiable with respect to point location

Co

* For many algorithms (sorting, shortest path,

network flow, ...),
 an infinitesimal change to model parameters

(almost) does not change solution structure,

leads to differentiable a.e.!
ere
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Computational requirement of metrics

« Efficient to compute

Chamfer distance: trivially parallelizable on CUDA

Earth Mover’s distance (optimal assignment):

-  We implement a distributed approximation algorithm
on CUDA

Based upon [Bertsekas, 1985], (1+¢) -approximation
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Pipeline
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Deep neural network

hidden layers
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Universal function approximator

A cascade of layers
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input

Deep neural network

hidden layers

00000
b
0000000
i
000000

6 2 @ output

000000

Universal function approximator

* Acascade of layers

* Each layer conducts a simple transformation (parameterized)
* Millions of parameters, has to be fitted by many data
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Pipeline
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Pipeline

Predictor
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Natural statistics of geometry
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* Many local structures are common

* e.d., planar patches, cylindrical patches
* strong local correlation among point coordinates
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Natural statistics of geometry
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* Many local structures are common

* e.d., planar patches, cylindrical patches
* strong local correlation among point coordinates

* Also some intricate structures
* points have hiah local variation
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Capture common structures
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- CaPture intricate structures
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Review: deconv network

e Output D arrays, e.g., 2D segmentation map
« Common local patterns are learned from data
» Preditt locally correlated data well

* Weight sharing reduces the number of params
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Deconv network for image segmentation ™
Credit: FCNN, Long et al.



Review: deconv network

* Output D arrays, e.g., 2D segmentation map
« Common local patterns are learned from data
» Preditt locally correlated data well

* Weight sharing reduces the number of params
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How to predict curved
surfaces in 3D?
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Deconv network for image segmentation ™
Credit: FCNN, Long et al.
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Prediction of curved 2D surfaces in 3D
« Surface parametrization (2D 3D mapping)
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Credit: Discrete Differential Geometry, Crane et al.
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Prediction of curved 2D surfaces in 3D

 Surface parametrization (2D-3D mapping)
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Parametrization prediction by deconv network

CaPture intricate structures
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Parametrization prediction by deconv network
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Parametrization prediction by deconv network
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Visualization of the learned parameterization

« Surface parametrization (2D 3D mapping)

Observation:

* Learns a smooth parametrization
- Because deconv net tends to predict data with
local correlation

map of x coord map of y coord map of z coord
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Natural statistics of geometry
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* Many local structures are common
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* €.g., planar patches, cylindrical patches
 strong local correlation among point coordinates

* Also some intricate structures CVPR 17, Point Set Generation
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Pipeline
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Pipeline

H —denseg
Capture intricate

 Points are predicted
independently
« Dense connection introduces

C
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Visualization of the effect of FC branch

« Surface parametrization (2D 3D mapping)

rvation:
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Visualization of the effect of FC branch

« Surface parametrization (2D 3D mapping)

4 Observation:

3 '%7 |- The arrangement of predicted points are
uncorrelated
<_b - Located at fine structures
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Q: Which color corresponds to the deconv branch?
FC branch?
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Q: Which color corresponds to the deconv branch?
FC branch?

blue: deconv branch — large, smooth structures
red: FC branch — intricate structures

“~
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Effect of combining two branches

Train/tested on 2K object categories
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Real-world results

observed view

observed view 90°
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Generalization to unseen categories

observed view
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Extension: shape completion for RGBD data
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RGBD map (input) 90°view of input output: completed point cloud
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Generation of Multiple Plausible Shapes

Ambiguity of the prediction arises at test time, the depth for
visible parts is under-determined, and the geometry for invisible
parts has to be hallucinated by guessing.

Min-of-N Loss (MoN):

minimize Z min {d(G(I..r::0). S
min {d(G(11.1;:0). 52}
©1<5<n



Min-of-N Loss (MoN)

point cloud generation distribution modeling
I.V. Mo2 / VAE
Point Set
: Prediction
. Network l point cloud loss
label » CD/EMD

Figure 4. System structure. By plugging in distributional modeling
module, our system is capable of generating multiple predictions.



SURFACE DEFORMATION-BASED
RECONSTRUCTION

UCSan Diego




~anarating points : PointSetGen

Another approach is to sample
points on the surface of the 3D
shape and work with an

Fan, H., Su, H., & Guibas, L. A point set generation network for 3d object reconstruction
from a single image. CVPR 2017

@ e Simple ~ o Unstructured point cloud



In fact, that’s our goal :
generating a set of 3D points
and the connectivity between

meshes and atlases

Vertices
Faces
UV coordinates



From an input object (on the
left), we use existing methods
to extract a latent vector, and

2D image

; Input
3D point cloud Shape feature

Output
3D mesh



Let’s try this on an arbitrary
shape : me ;)

~1est Shape —>




Generating points

We build on PointSetGen, and
its point cloud representation.
In its simplest form, the latent

results
wawwg of surface, thin structures

Latent shape Generated
representation 3D points

— I ) MLP —>o:‘.:..'




Kav idaa 1: deform a surface

Lh.s 'é%ﬁiélfﬁb"l‘ by sampling many points and minimizing
ec&eﬁlrc ite _i_uret e ilosrtance
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Kav idaa 2: |legrn an atlas

To sﬂ/e this iSSU'E instead of
in

cris@@iRtesiimply by sampling many points and minimizing

Chamfer distance

Generated
3D point
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Latent shape
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ed object.

/ idea 2: learn an atlas

__arnt simply by sampling many points and minimizing
Chamfer distance Generated

3D point
;‘.iw Latent shape .=
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bes back to the

dea 2: learn an atlas

Learnt simply by sampling many points and minimizing
Chamfer distance

Generated
3D point

atent shape

cpresentation | =g MLP 2

—» MLP1 —p
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(' —» MLP3 —p .
Sampled
2D poine * ’




such as single view
reconstruction here.
From an single image, from left

by

5
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(a) Input (b) 3D-R2N2  (c) HSP (d) PSG (e) Ours

<
-



NEXT LECTURE: LAPLACIAN
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