
Deep Learning on 
Extrinsic Geometry

Instructor: Hao Su

slides credits: Justin Solomon, Chengcheng Tang



Thu of 3rd week (week of Jan 20): Announcement of projects and start to form project 
teams 

Tue of 4th week (week of Jan 27): Due of casting votes on projects for each team 

Thu of 4th week (week of Jan 27): Announcement of project-group alignment 

Thu of 5th week (week of Feb 3): Work plan (1 page, template provided) 

Thu of 8th week (week of Feb 24): Mid-term report (3 pages, template provided) 

Tue/Thu of 10th week (week of Mar 9): Final presentation (15 minutes for each team) 

Thu of 11th week (week Mar 16): Final report write-up (6 pages, template provided)

Dues
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Set comparison

Given two sets of points, measure their discrepancy
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Set comparison

Given two sets of points, measure their discrepancy

Key challenge: 

correspondence 
problem
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Correspondence (I): optimal assignment

a.k.a Earth Mover’s distance (EMD)

Given two sets of points, measure their discrepancy

CVPR ’17, Point Set Generation



Correspondence (II): closest point

a.k.a Chamfer distance (CD)

Given two sets of points, measure their discrepancy
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Distance metrics affect mean shapes
The mean shape carries characteristics of the distance 
metric

continuous 
hidden variable

(radius)
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Mean shapes from distance metrics
The mean shape carries characteristics of the distance 
metric

Input EMD mean Chamfer mean

continuous 
hidden variable

(radius)
discrete 

hidden variable
(add-on location)
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Comparison of predictions by EMD versus CD

Input ChamferEMD
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Computational requirement of metrics
To be used as a loss function, the metric has to be

•    Differentiable with respect to point locations

•    Efficient to compute
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Computational requirement of metrics
•    Differentiable with respect to point location

- Simple function of coordinates
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence 

does not change

Conclusion: differentiable almost everywhere

Chamfer distance

Earth Mover’s distance

CVPR ’17, Point Set Generation



Computational requirement of metrics
•    Differentiable with respect to point location

- Simple function of coordinates
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence 

does not changeConclusion: differentiable almost everywhere

Chamfer distance

Earth Mover’s distance
• For many algorithms (sorting, shortest path, 

network flow, …),
• an infinitesimal change to model parameters 

(almost) does not change solution structure, 

leads to differentiable a.e.!
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- We implement a distributed approximation algorithm 
on CUDA

- Based upon [Bertsekas, 1985],           -approximation

Computational requirement of metrics
•    Efficient to compute

Chamfer distance: trivially parallelizable on CUDA
Earth Mover’s distance (optimal assignment):

CVPR ’17, Point Set Generation
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Universal function approximator
x

• A cascade of layers

Deep neural network

outputinput

hidden layers

… …
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Deep neural network

outputinput

hidden layers

… …
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Universal function approximator
x

• A cascade of layers
• Each layer conducts a simple transformation (parameterized)



Deep neural network

Universal function approximator
x

• A cascade of layers
• Each layer conducts a simple transformation (parameterized)
• Millions of parameters, has to be fitted by many data

outputinput

hidden layers

… …
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Natural statistics of geometry

• Many local structures are common
• e.g., planar patches, cylindrical patches
• strong local correlation among point coordinates
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Natural statistics of geometry

• Many local structures are common
• e.g., planar patches, cylindrical patches
• strong local correlation among point coordinates

• Also some intricate structures
• points have high local variation

CVPR ’17, Point Set Generation
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Review: deconv network

• Output   D arrays, e.g., 2D segmentation map
• Common local patterns are learned from data
• Predict locally correlated data well
• Weight sharing reduces the number of params

Credit: FCNN, Long et al.
Deconv network for image segmentation

n



Review: deconv network

• Output   D arrays, e.g., 2D segmentation map
• Common local patterns are learned from data
• Predict locally correlated data well
• Weight sharing reduces the number of params

n

How to predict curved 
surfaces in 3D?

Credit: FCNN, Long et al.
Deconv network for image segmentation



Prediction of curved 2D surfaces in 3D

• Surface parametrization (2D     3D mapping)

Credit: Discrete Differential Geometry, Crane et al.



Prediction of curved 2D surfaces in 3D

• Surface parametrization (2D     3D mapping)

Credit: Discrete Differential Geometry, Crane et al.



Prediction of curved 2D surfaces in 3D

• Surface parametrization (2D-3D mapping)

Credit: Discrete Differential Geometry, Crane et al.

x-map

y-map

z-map

coordinate maps



Parametrization prediction by deconv network
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Parametrization prediction by deconv network
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Capture intricate structures

Parametrization prediction by deconv network
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... 

deconv

coordinate maps

Capture intricate 
Note that
• The parametrization (2D/3D mapping) is learned from data
• i.e., obtains a network and data friendly parametrization

Capture common structures



Visualization of the learned parameterization

map of x coord

Observation:
• Learns a smooth parametrization
• Because deconv net tends to predict data with 

local correlation
(xk, yk, zk)

map of y coord map of z coord

• Surface parametrization (2D     3D mapping)



Observation:
• Learns a smooth parametrization
• Because deconv net tends to predict data with 

local correlation

Visualization of the learned parameterization

• Surface parametrization (2D     3D mapping)

(xk, yk, zk)

map of x coord map of y coord map of z coord





Natural statistics of geometry

• Many local structures are common
• e.g., planar patches, cylindrical patches
• strong local correlation among point coordinates

• Also some intricate structures CVPR ’17, Point Set Generation
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• Points are predicted 
independently

• Dense connection introduces 
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Visualization of the effect of FC branch

• Surface parametrization (2D     3D mapping)

x-coord y-coord z-coord red
CVPR ’17, Point Set Generation

Observation:
• The arrangement of predicted points are 

uncorrelated



Visualization of the effect of FC branch

• Surface parametrization (2D     3D mapping)

x-coord y-coord z-coord red
CVPR ’17, Point Set Generation

Observation:
• The arrangement of predicted points are 

uncorrelated
• Located at fine structures



Q: Which color corresponds to the deconv branch? 
FC branch?
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Q: Which color corresponds to the deconv branch? 
FC branch?

blue: deconv branch – large, smooth structures
red: FC branch – intricate structures

CVPR ’17, Point Set Generation



Effect of combining two branches
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Train/tested on 2K object categories



Real-world results

input observed view   input observed view  
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Generalization to unseen categories

input observed view   input observed view  

Out of training categories CVPR ’17, Point Set Generation



Extension: shape completion for RGBD data

view of input90�RGBD map (input) output: completed point cloud
CVPR ’17, Point Set Generation



Generation of Multiple Plausible Shapes
Ambiguity of the prediction arises at test time, the depth for 
visible parts is under-determined, and the geometry for invisible 
parts has to be hallucinated by guessing.  
     
   

    Min-of-N Loss (MoN): 

   

     
    
  



Min-of-N Loss (MoN)



SURFACE DEFORMATION-BASED 
RECONSTRUCTION



Generating points : PointSetGen

Fan, H., Su, H., & Guibas, L.  A point set generation network for 3d object reconstruction 
from a single image.  CVPR 2017

• Unstructured point cloud• Simple

Another approach is to sample 
points on the surface of the 3D 
shape and work with an 



In fact, that’s our goal : 
generating a set of 3D points 
and the connectivity between 



From an input object (on the 
left), we use existing methods 
to extract a latent vector, and 



Test Shape 

Let’s try this on an arbitrary 
shape : me :)




Generating points

• Quite similar results
• Issue: no idea of surface, thin structures

We build on PointSetGen, and 
its point cloud representation.

In its simplest form, the latent 



Sampled  
2D point

MLP

Generated 
3D pointLatent shape 

representation

y

Key idea 1: deform a surface
We observed that and build on 
this work by adding in the 
decoder architecture the prior 

Learnt simply by sampling many points and minimizing 
Chamfer distance



Sampled  
2D point

MLP 1

Generated 
3D point

Latent shape 
representation

y

Key idea 2: learn an atlas
To solve this issue, instead of 
learning a single deformation, 
we learn K deformations


Learnt simply by sampling many points and minimizing 
Chamfer distance



Learnt simply by sampling many points and minimizing 
Chamfer distance

Sampled  
2D point

MLP 1

Generated 
3D point

Latent shape 
representation

y

Key idea 2: learn an atlas

MLP 2

MLP 3

to cover the generated object. 




Learnt simply by sampling many points and minimizing 
Chamfer distance

Sampled  
2D point

MLP 1

Generated 
3D point

Latent shape 
representation

y

Key idea 2: learn an atlas

MLP 2

MLP 3

And this works much better in 
practice.

This actually goes back to the 



such as single view 
reconstruction here.

From an single image, from left 



NEXT LECTURE: LAPLACIAN


