
Deep Learning on 
Extrinsic Geometry

Instructor: Hao Su

slides credits: Justin Solomon, Chengcheng Tang



3D deep learning tasks

3D geometry analysis

Classification Parsing
(object/scene)

Correspondence



3D deep learning tasks

3D synthesis

Monocular 
3D reconstruction

Shape completion Shape modeling



3D deep learning algorithms (by representations)

• Projection-based

VolumetricMulti-view

[Su et al. 2015]
[Kalogerakis et al. 2016]
…

[Maturana et al. 2015]
[Wu et al. 2015] (GAN)
[Qi et al. 2016]
[Liu et al. 2016]
[Wang et al. 2017] (O-Net)
[Tatarchenko et al. 2017] (OGN)
…



3D deep learning algorithms (by representations)

• Projection-based

[Defferard et al. 2016]
[Henaff et al. 2015]
[Yi et al. 2017] (SyncSpecCNN)
…

VolumetricMulti-view

[Qi et al. 2017] (PointNet)
[Fan et al. 2017] (PointSetGen)

Point 
cloud

Mesh (Graph 
CNN)

Part 
assembly

[Tulsiani et al. 2017]
[Li et al. 2017] (GRASS)

[Su et al. 2015]
[Kalogerakis et al. 2016]
…

[Maturana et al. 2015]
[Wu et al. 2015] (GAN)
[Qi et al. 2016]
[Liu et al. 2016]
[Wang et al. 2017] (O-Net)
[Tatarchenko et al. 2017] (OGN)
…



Cartesian product space of “task” and 
“representation”

3D geometry analysis

3D synthesis



DEEP LEARNING ON POINT CLOUD DATA



Agenda

• Why point cloud?
• Comparison of point cloud
• Point cloud generation by deep learning
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Point Clouds

Simplest representation: only points, no connectivity
Collection of (x,y,z) coordinates, possibly with normals
Points with orientation are called surfels

Filip van Bouwel



Why Point Clouds?
1) Typically, that’s the only thing that’s available
2) Isolation: sometimes, easier to handle (esp. in 

hardware).

Meshless Animation of Fracturing Solids 
Pauly et al., SIGGRAPH ‘05

Fracturing Solids Fluids

Adaptively sampled particle fluids,
Adams et al. SIGGRAPH ‘07



Why Point Clouds?
• Typically, that’s the only thing that’s available

Nearly all 3D scanning devices produce point clouds



Agenda

• Why point cloud?
• Comparison of point cloud
• Point cloud generation by deep learning



Point cloud as samples

• Point cloud can be thought as a representation of 
prob. distribution

• Compare point cloud is to compare underlying 
distributions



Which is closer, 1 or 2?

Query 1 2
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Which is closer, 1 or 2?

Query 1 2

p(x; y)

p1(x; y) p2(x; y)



p1(x) p2(x)

Lp norm
KL divergence



Which is closer, 1 or 2?

Query 1 2

p(x; y)

p1(x; y) p2(x; y)



Neither!  

Query 1 2

p(x; y)

p1(x; y) p2(x; y)



Measured overlap, 
not displacement.



Image courtesy M. Cuturi

Geometric theory of probability



Compare in this direction

Not in this direction



Match mass from the distributions



� Supply distribution 𝒑𝟎
� Demand distribution 𝒑ퟏ



p q

𝒎 ⋅ 𝒅(𝒙, 𝒚)

Starts at 𝒑

Ends at 𝒒

Positive mass



EMD is a metric when d(x,y) 
satisfies the triangle inequality.

“The Earth Mover's Distance as a Metric for Image Retrieval”
Rubner, Tomasi, and Guibas; IJCV 40.2 (2000):  99—121.

Revised in:
“Ground Metric Learning”

Cuturi and Avis; JMLR 15 (2014)



Min-cost flow



� Step 1: Compute 𝑫𝒊풋

� Step 2: Solve linear program
� Simplex
� Interior point
� Hungarian algorithm
� …



Underlying map!



Continuous analog of EMD
http://www.sciencedirect.com/science/article/pii/S152407031200029X#

Shortest path 
distance

Expectation

Geodesic distance d(x,y)



Agenda

• Why point cloud?
• Comparison of point cloud
• Point cloud generation by deep learning



3D perception from a single image



Monocular vision

a typical predatora typical prey

Cited from https://en.wikipedia.org/wiki/Binocular_vision



A psychological evidence – mental rotation

by Roger N. Shepard, National Science Medal Laurate
and Lynn Cooper, Professor at Columbia University



contrast
color

motion

texture

symmetry

category-specific 3D knowledge

part

……

Visual cues are complicated



Status review of monocular vision algorithms

▪ Shape from X (texture, 
shading, …)

[Horn, 1989]

[Kender, 1979]



Status review of monocular vision algorithms

▪ Shape from X (texture, 
shading, …)

▪ Learning-based (from small 
data) 

Hoiem et al, ICCV’05
Saxena et al, 
NIPS’05
…

[Horn, 1989]

[Kender, 1979]

- large planes

- fine structure
- topological variation
- …



Status review of monocular vision algorithms

▪ Shape from X (texture, 
shading, …)

▪ Learning-based (from small 
data) 

Hoiem et al, ICCV’05
Saxena et al, 
NIPS’05
…

[Horn, 1989]

[Kender, 1979]

- large planes

- fine structure
- topological variation
- …

Strong assumption
Not robust



Data-driven 2D-3D lifting

Many 3D objects



Our result: 3D reconstruction from real Images

Input Reconstructed 3D point cloud

CVPR 2017, A Point Set Generation Network for 3D Object Reconstruction from a Single 
Image 

CVPR ’17, Point Set Generation



Our result: 3D reconstruction from real Images

Input Reconstructed 3D point cloud
CVPR ’17, Point Set Generation

CVPR 2017, A Point Set Generation Network for 3D Object Reconstruction from a Single 
Image 



3D point clouds

     Flexible
• a few thousands of points can 

precisely model a great variety of 
shapes

CVPR ’17, Point Set Generation



3D point clouds

     Flexible
• a few thousands of points can 

precisely model a great variety of 
shapes

     Geometrically manipulable
• deformable
• interpolable, extrapolable
• convenient to impose structural 

constraints

CVPR ’17, Point Set Generation



Pipeline

CVPR ’17, Point Set Generation

rend
er



Pipeline

CVPR ’17, Point Set Generation

rend
er

sampl
e

2K object categories
200K shapes
~10M image/point set pairs

Groundtruth point set



Pipeline

Shape predictor 
Prediction

CVPR ’17, Point Set Generation

rend
er

sampl
e

Groundtruth point set

(f)



Pipeline

Shape predictor 
Prediction

CVPR ’17, Point Set Generation

rend
er

sampl
e

Groundtruth point set

A set is 
invariant up to 
permutation

(f)



Shape predictor 

Pipeline

Loss
on

sets

CVPR ’17, Point Set Generation
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Pipeline

Shape predictor 
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rend
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Prediction
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Groundtruth point set

Loss
on

sets
(L)



Set comparison

Given two sets of points, measure their discrepancy

CVPR ’17, Point Set Generation



Set comparison

Given two sets of points, measure their discrepancy

Key challenge: 

correspondence 
problem

CVPR ’17, Point Set Generation



Correspondence (I): optimal assignment

a.k.a Earth Mover’s distance (EMD)

Given two sets of points, measure their discrepancy

CVPR ’17, Point Set Generation



Correspondence (II): closest point

a.k.a Chamfer distance (CD)

Given two sets of points, measure their discrepancy

CVPR ’17, Point Set Generation



Required properties of distance metrics
Geometric requirement

Computational requirement

CVPR ’17, Point Set Generation



Required properties of distance metrics
Geometric requirement

• Reflects natural shape differences

• Induce a nice space for shape interpolations

Computational requirement

CVPR ’17, Point Set Generation



How distance metric affects learning?
A fundamental issue: inherent ambiguity in 2D-3D 
dimension lifting
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How distance metric affects learning?
A fundamental issue: inherent ambiguity in 2D-3D 
dimension lifting

• By loss minimization, the network tends to predict a 

“mean shape” that averages out uncertainty
CVPR ’17, Point Set Generation



Distance metrics affect mean shapes
The mean shape carries characteristics of the distance 
metric

continuous 
hidden variable

(radius)

CVPR ’17, Point Set Generation
Input EMD mean Chamfer mean



Mean shapes from distance metrics
The mean shape carries characteristics of the distance 
metric

Input EMD mean Chamfer mean

continuous 
hidden variable

(radius)
discrete 

hidden variable
(add-on location)

CVPR ’17, Point Set Generation



Comparison of predictions by EMD versus CD

Input ChamferEMD

CVPR ’17, Point Set Generation



Required properties of distance metrics
Geometric requirement

• Reflects natural shape differences

• Induce a nice space for shape interpolations

Computational requirement

• Defines a loss function that is numerically easy to 
optimize

CVPR ’17, Point Set Generation



Computational requirement of metrics
To be used as a loss function, the metric has to be

•    Differentiable with respect to point locations

•    Efficient to compute

CVPR ’17, Point Set Generation



Computational requirement of metrics
•    Differentiable with respect to point location

- Simple function of coordinates
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence 

does not change

Conclusion: differentiable almost everywhere

Chamfer distance

Earth Mover’s distance

CVPR ’17, Point Set Generation



Computational requirement of metrics
•    Differentiable with respect to point location

- Simple function of coordinates
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence 

does not changeConclusion: differentiable almost everywhere

Chamfer distance

Earth Mover’s distance
• For many algorithms (sorting, shortest path, 

network flow, …),
• an infinitesimal change to model parameters 

(almost) does not change solution structure, 

leads to differentiable a.e.!

CVPR ’17, Point Set Generation



- We implement a distributed approximation algorithm 
on CUDA

- Based upon [Bertsekas, 1985],           -approximation

Computational requirement of metrics
•    Efficient to compute

Chamfer distance: trivially parallelizable on CUDA
Earth Mover’s distance (optimal assignment):

CVPR ’17, Point Set Generation



Pipeline

CVPR ’17, Point Set Generation

Loss
on

sets

sampl
e

(L)

Deep network Prediction

(f)



Universal function approximator
x

• A cascade of layers

Deep neural network

outputinput

hidden layers

… …

CVPR ’17, Point Set Generation



Deep neural network

outputinput

hidden layers

… …

CVPR ’17, Point Set Generation

Universal function approximator
x
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• Each layer conducts a simple transformation (parameterized)



Deep neural network

Universal function approximator
x

• A cascade of layers
• Each layer conducts a simple transformation (parameterized)
• Millions of parameters, has to be fitted by many data

outputinput

hidden layers

… …

CVPR ’17, Point Set Generation



Pipeline
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Pipeline
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Encoder Predictor

shape 
embedding

space 
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Encoder Predictor

shape 
embedding

space 



Pipeline
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Pipeline

CVPR ’17, Point Set Generation

Loss
on

sets

sampl
e

(L)

Predictor
conv

... 



Natural statistics of geometry

• Many local structures are common
• e.g., planar patches, cylindrical patches
• strong local correlation among point coordinates
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Natural statistics of geometry

• Many local structures are common
• e.g., planar patches, cylindrical patches
• strong local correlation among point coordinates

• Also some intricate structures
• points have high local variation

CVPR ’17, Point Set Generation








