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3D deep learning tasks

3D geometry analysis

It is a chair!

Classification Parsing Correspondence
(object/scene)



3D deep learning tasks

3D synthesis
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3D deep learning algorithms (by representations)

* Projection-based

& [Suetal. 2015] [Maturana et al. 2015]
4 o i [Kalogerakis et al. 2016] [Wu et al. 2015] (GAN)
Q . - [Qi et al. 2016]

[Liu et al. 2016]

- :‘0 . [Wang et al. 2017] (O-Net)
5 shapemodel = :‘ [Tatarchenko et al. 2017] (OGN)

diffel

Multi-view Volumetric



3D deep learning algorithms (by representations)

* Projection-based
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Cartesian product space of “task” and
“representation”

3D geometry analysis

3D synthesis -



DEEP LEARNING ON POINT CLOUD DATA

UCSan Diego




Agenda

* Why point cloud?
« Comparison of point cloud
* Point cloud generation by deep learning
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 Why point cloud?
« Comparison of point cloud
* Point cloud generation by deep learning



Point Clouds

¢ Simplest representation: only points, no connectivity
¢ Collection of (x,y,z) coordinates, possibly with normals
¢ Points with orientation are called surfels
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Why Point Clouds?

1) Typically, that's the only thing that's available

2) Isolation: sometimes, easier to handle (esp. in
hardware).

Fracturing Solids s
k » \ 7:.:..;
-7 } (‘ 4 :"::’ e

Meshless Animation of Fracturing Solids

Adaptively sampled particle fluids,
Pauly et al., SIGGRAPH ‘05

Adams et al. SIGGRAPH ‘07



Why Point Clouds?

« Typically, that’'s the only thing that's available
Nearly all 3D scanning devices produce point clouds




Agenda

* Why point cloud?
« Comparison of point cloud
* Point cloud generation by deep learning



Point cloud as samples

 Point cloud can be thought as a representation of
prob. distribution

« Compare point cloud is to compare underlying
distributions



Motivating Question

Which is closer, 1 or 2?
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Which is closer, 1 or 2?
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Returning to the Question

Which is closer, 1 or 2?



Returning to the Question

Neither! Equidistant.



What's Wrong?

A

overlap
displacement



Optimal Transport

[McCann’95]
Interpolant

metric space

Image courtesy M. Cuturi

Geometric theory of probability



Alternative Idea

Compare in this direction

ot in this direction




Alternative Idea

<

Match mass from the distributions



Transportation Matrix

Supply distribution p,
Demand distribution p4
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Earth Mover’s Distance
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Important Theorem

EMD is a metric when d(x,y)
satisfies the triangle inequality.

“The Earth Mover's Distance as a Metric for Image Retrieval”
Rubner, Tomasi, and Guibas; IJCV 40.2 (2000): 99—121.

Revised in:
“Ground Metric Learning”
Cuturi and Avis; JMLR 15 (2014)



Discrete Perspective
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Algorithm for Small-Scale Problems

Step 1: Compute D;;

Step 2: Solve linear program
Simplex
Interior point
Hungarian algorithm



Transportation Matrix Structure

Underlying map!



p-Wasserstein Distance

1/p
W,(u,v) = min // d(x,y)? dr(x >
p( mell(u,v) < X % X y ( y)

N J((

“Monge-Kantorovich ,yg’/* ® G odesic distance d(x,y)
problem” («((f(! j
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General cost:

Continuous analog of EMD



Agenda

* Why point cloud?
« Comparison of point cloud
» Point cloud generation by deep learning



3D perception from a single image




Monocular vision

a typical prey a typical predator

Pigeon Owl

B Binocular vision Monocular vision

Cited from https.//en.wikipedia.org/wiki/Binocular_vision



A psychological evidence — mental rotation

Mental Images

and Their
Transformations

Shepard

rer

by Roger N. Shepard, National Science Medal Laurate
and Lynn Cooper, Professor at Columbia University



Visual cues are complicated

contrast
color

texture

motion

g

symmetry

part

category-specific 3D knowledge



Status review of monocular vision algorithms

= Shape from X (texture,
shading, ...)

[Kender, 1979]



Status review of monocular vision algorithms

= Shape from X (texture, = Learning-based (from small
shading, ...) data)

Hoiem et al, ICCV’05
&8 Saxena et al,
NIPS’05
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- large planes

[Horn, 1989]
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- fine structure
- topological variatio

[Kender, 1979] -




Status review of monocular vision algorithms

= Shape from X (texture, = Learning-based (from small
shading, ...) data)

Hoiem et al, ICCV’05

B Saxena et al,
NIPS’05

N

Strong assumption
Not robust

- large planes

ZATA
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fine structure
topological variatio

[Kender, 1979] -



Data-driven 2D-3D lifting

A priori knowledge of

! the 3D world
Many 3D objects



Our result: 3D reconstruction from real Images

CVPR 2017, A Point Set Generation Network for 3D Object Reconstruction from a Single
Image

Reconstructed 3D,Point cloud
CVPR

7, Point Set Generation



Our result: 3D reconstruction from real Images

CVPR 2017, A Point Set Generation Network for 3D Object Reconstruction from a Single
Image

Reconstructed 3D,Point cloud
CVPR

7, Point Set Generation



3D point clouds

v" Flexible f
« a few thousands of points can

precisely model a great variety of
shapes

CVPR ’17, Point Set Generation



3D point clouds

v" Flexible f
« a few thousands of points can

precisely model a great variety of
v shapes

Geometrically manipulable i

« deformable

* Interpolable, extrapolable

* convenient to impose structural
constraints

CVPR ’17, Point Set Generation



Pipeline

rend
er

CVPR ’17, Point Set Generation



Pipeline

2K object categories
200K shapes
~10M image/point set pairs

rend
er

(901, Yt, 21)
[> (902,312,22)

(xna Yn, Zn)

Groundtruth point set

CVPR ’17, Point Set Generation



Pipeline

Prediction
(@]9}, 2))
[> (2, 1, )
(&5, 20)
rend
er
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Groundtruth point set

CVPR ’17, Point Set Generation



Pipeline

Prediction
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Groundtruth point set

CVPR ’17, Point Set Generation



Pipeline

Prediction

(@), 4, 2))
(2, b, 2b) [>
(@], yns 20)

rend
er
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(2,12, 22) i>

(:Cn, Yn,s Zn)

Groundtruth point se

CVPR ’17, Point Set Generation



Pipeline

Prediction

(@), 4, 2))
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Groundtruth point se

CVPR ’17, Point Set Generation



Set comparison

Given two sets of points, measure their discrepancy
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CVPR ’17, Point Set Generation



Set comparison

Given two sets of points, measure their dis%repancy
@

®
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Key challenge:

correspondence

problem
.

)

CVPR ’17, Point Set Generation



Correspondence (l): optimal assignment

Given two sets of points, measure their discrepancy

e :
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a.k.a Earth Mover’s distance (EMD)
dgmp(S1,S2) = d):gllElSQ Z; |z —@(x)l2 where ¢ : S; — S is a bijection.
veo CVPR ’17, Point Set Generation



Correspondence (ll): closest point

Given two sets of points, measure their discrepancy

)
o

/.
¢ \ ,

a.k.a Chamfer distance (CD)
dcp(S1, S2) = Z mm lz — yll5 + Z mm |l — yll3
rES vess” CVPR ’17, Point Set Generation



Required properties of distance metrics

Geometric requirement

Computational requirement

CVPR ’17, Point Set Generation



Required properties of distance metrics
Geometric requirement

* Reflects natural shape differences

 Induce a nice space for shape interpolations

Computational requirement

CVPR ’17, Point Set Generation



How distance metric affects learning?

A fundamental issue: inherent ambiguity in 2D-3D

dimension lifting

CVPR ’17, Point Set Generation
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How distance metric affects learning?

A fundamental issue: inherent ambiguity in 2D-3D

dimension lifting

CVPR ’17, Point Set Generation



How distance metric affects learning?

A fundamental issue: inherent ambiguity in 2D-3D

dimension lifting

* By loss minimization, the network tends to predict a

“‘mean shape” that averages out uncertainty
CVPR ’17, Point Set Generation



Distance metrics affect mean shapes

The mean shape carries characteristics of the distance
metric

continuous { ey
nidden variable \_) O o
(radius)
Input EMD mean Chamfer mean

CVPR ’17, Point Set Generation



Mean shapes from distance metrics

The mean shape carries characteristics of the distance
metric

continuous - IR
nidden variable (_) O '”i'.;.,:,:..-‘."
(radius)
discrete %: i
nidden variable 3%
add-on location)  ** =3 Lo
Input EMD mean Chamfer mean

CVPR ’17, Point Set Generation



Comparison of predictions by EMD versus CD

Input EMD Charryer

"

CVPR ’17, Point Set Generation



Required properties of distance metrics
Geometric requirement

* Reflects natural shape differences

* Induce a nice space for shape interpolations

Computational requirement

* Defines a loss function that is numerically easy to
optimize

CVPR ’17, Point Set Generation



Computational requirement of metrics

To be used as a loss function, the metric has to be
« Differentiable with respect to point locations

« Efficient to compute

CVPR ’17, Point Set Generation



Computational requirement of metrics

- Differentiable with respect to point location

Chamfer distance
dop(S1,52) = Z mln |z — yll5 + Z mm lz —yll3

yGS

Earth Mover’s distance
demp(S1,52) = qb:glli_{l& ; |z —¢(z)ll2 where ¢ : S1 — S is a bijection.
€S

- Simple function of coordinates

- In general positions, the correspondence is unique

- With infinitesimal movement, the correspondence
does not change

Conclusion: differentiable almost everywhere



Computational requirement of metrics

Differentiable with respect to point location

Co

* For many algorithms (sorting, shortest path,

network flow, ...),
 an infinitesimal change to model parameters

(almost) does not change solution structure,

leads to differentiable a.e.!
ere

CVPR ’17, Point Set Generation



Computational requirement of metrics

« Efficient to compute

Chamfer distance: trivially parallelizable on CUDA

Earth Mover’s distance (optimal assignment):

-  We implement a distributed approximation algorithm
on CUDA

Based upon [Bertsekas, 1985], (1+¢) -approximation

CVPR ’17, Point Set Generation



Pipeline
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Deep neural network

hidden layers
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Universal function approximator

A cascade of layers

CVPR ’17, Point Set Generation



Deep neural network

hidden layers
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Universal function approximator

A cascade of layers

Each layer conducts a simple transformation (parameterized)
CVPR ’17, Point Set Generation



input

Deep neural network

hidden layers
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Universal function approximator

* Acascade of layers

* Each layer conducts a simple transformation (parameterized)
* Millions of parameters, has to be fitted by many data

CVPR ’17, Point Set Generation



Pipeline
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Pipeline
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Pipeline

CVPR ’17, Point Set Generation



Pipeline

CVPR ’17, Point Set Generation



Pipeline

Predictor

CVPR ’17, Point Set Generation



Natural statistics of geometry
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* Many local structures are common

* e.d., planar patches, cylindrical patches
* strong local correlation among point coordinates

CVPR ’17, Point Set Generation



Natural statistics of geometry

>

e e

* Many local structures are common

* e.d., planar patches, cylindrical patches
* strong local correlation among point coordinates

* Also some intricate structures
* points have hiah local variation

CVPR ’17, Point Set Generation



cony deconv fully connected set union concatenation

vanilla version

Encoder

Predictor



conv

fully connected set union concatenation

Encoder

Predictor

two prediction branch version



conv deconv fully connected set union concatenation
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Figure 2. PointOutNet structure



