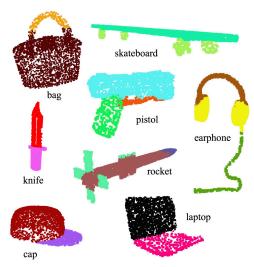


Deep Learning on Extrinsic Geometry

Instructor: Hao Su

3D deep learning tasks

3D geometry analysis



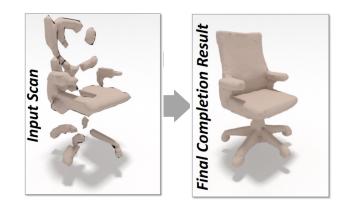
Classification

Parsing (object/scene)

Correspondence

3D deep learning tasks

3D synthesis



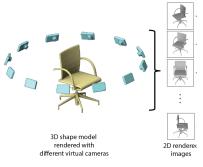
Monocular 3D reconstruction

Shape completion

Shape modeling

3D deep learning algorithms (by representations)

Projection-based



[Su et al. 2015] [Kalogerakis et al. 2016]

6]

[Maturana et al. 2015] [Wu et al. 2015] (GAN) [Qi et al. 2016] [Liu et al. 2016] [Wang et al. 2017] (O-Net) [Tatarchenko et al. 2017] (OGN)

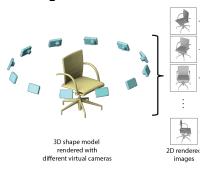
...

Multi-view

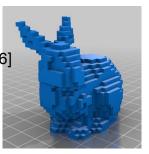
Volumetric

3D deep learning algorithms (by representations)

Projection-based



[Su et al. 2015] [Kalogerakis et al. 2016]



[Maturana et al. 2015] [Wu et al. 2015] (GAN) [Qi et al. 2016] [Liu et al. 2016] [Wang et al. 2017] (O-Net) [Tatarchenko et al. 2017] (OGN)

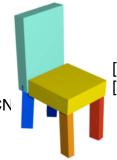
. . .

Multi-view

Volumetric

[Defferard et al. 2016] [Henaff et al. 2015] [Yi et al. 2017] (SyncSpecCN

٠.



[Tulsiani et al. 2017] [Li et al. 2017] (GRASS)

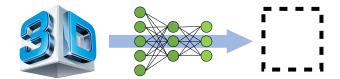
Point cloud

Mesh (Graph CNN)

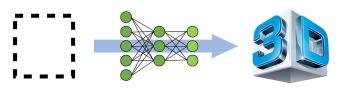
Part assembly

Cartesian product space of "task" and "representation"

3D geometry analysis



3D synthesis



DEEP LEARNING ON POINT CLOUD DATA

Agenda

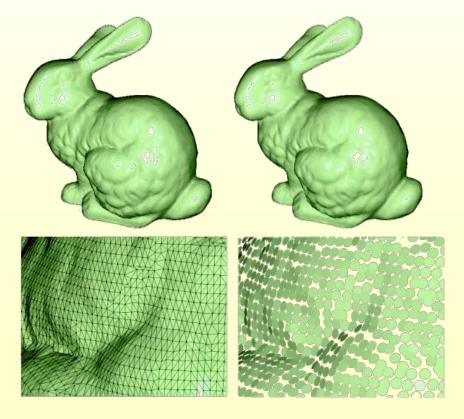
- Why point cloud?
- Comparison of point cloud
- Point cloud generation by deep learning

Agenda

- Why point cloud?
- Comparison of point cloud
- Point cloud generation by deep learning

Point Clouds

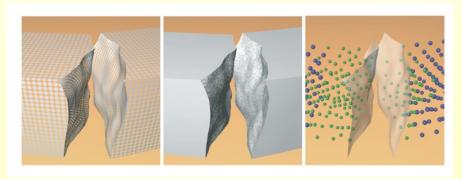
- Simplest representation: only points, no connectivity
- Collection of (x,y,z) coordinates, possibly with normals
- Points with orientation are called surfels



Why Point Clouds?

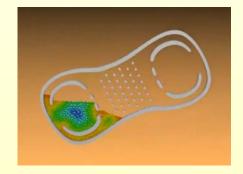
- 1) Typically, that's the only thing that's available
- 2) Isolation: sometimes, easier to handle (esp. in hardware).

Fracturing Solids



Meshless Animation of Fracturing Solids Pauly et al., SIGGRAPH '05

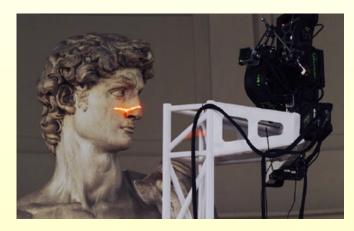
Fluids



Adaptively sampled particle fluids, Adams et al. SIGGRAPH '07

Why Point Clouds?

Typically, that's the only thing that's available
 Nearly all 3D scanning devices produce point clouds



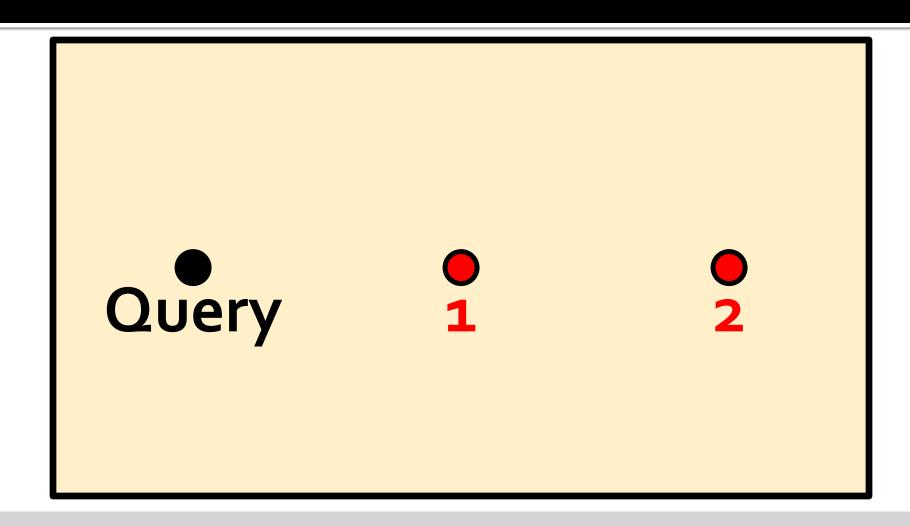
Agenda

- Why point cloud?
- Comparison of point cloud
- Point cloud generation by deep learning

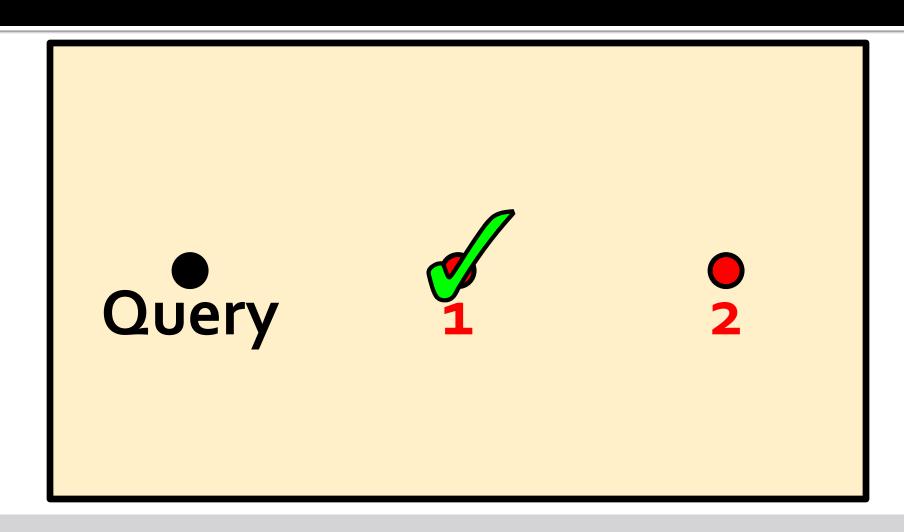
Point cloud as samples

- Point cloud can be thought as a representation of prob. distribution
- Compare point cloud is to compare underlying distributions

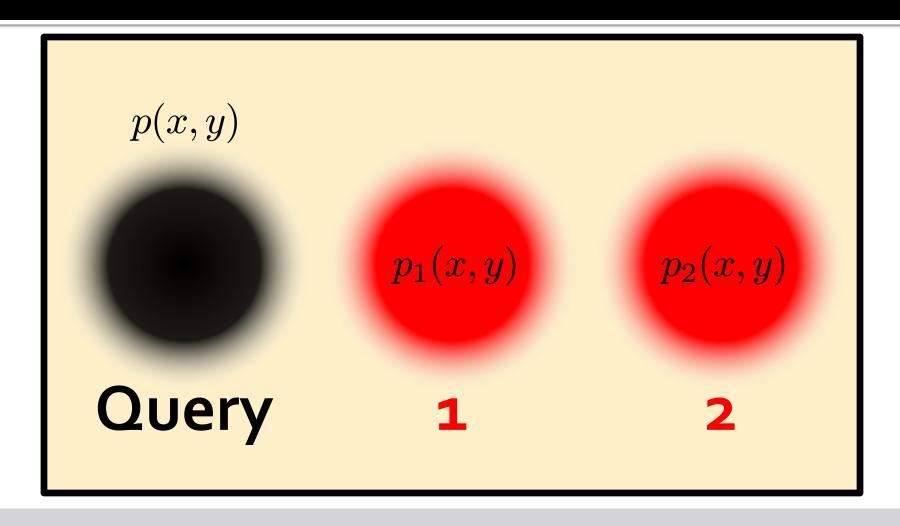
Motivating Question



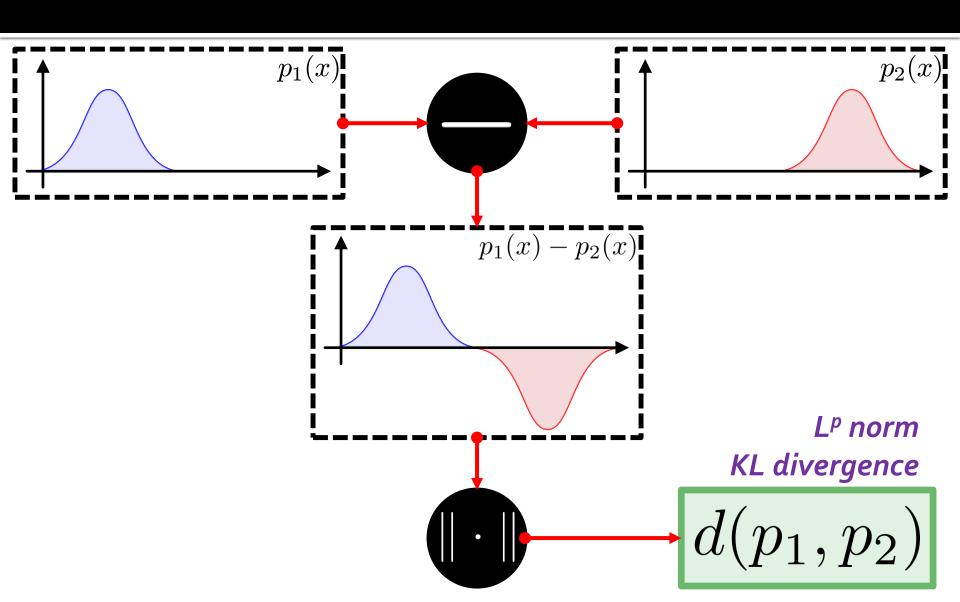
Motivating Question



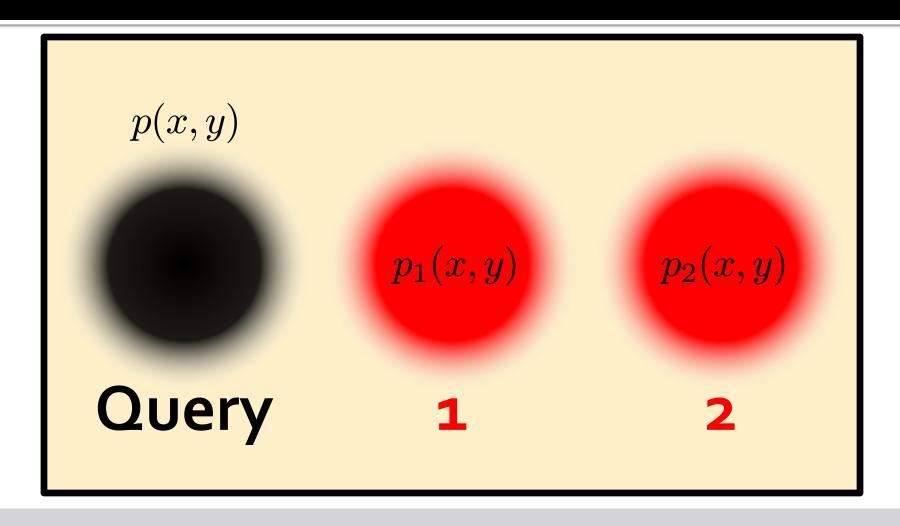
Fuzzy Version



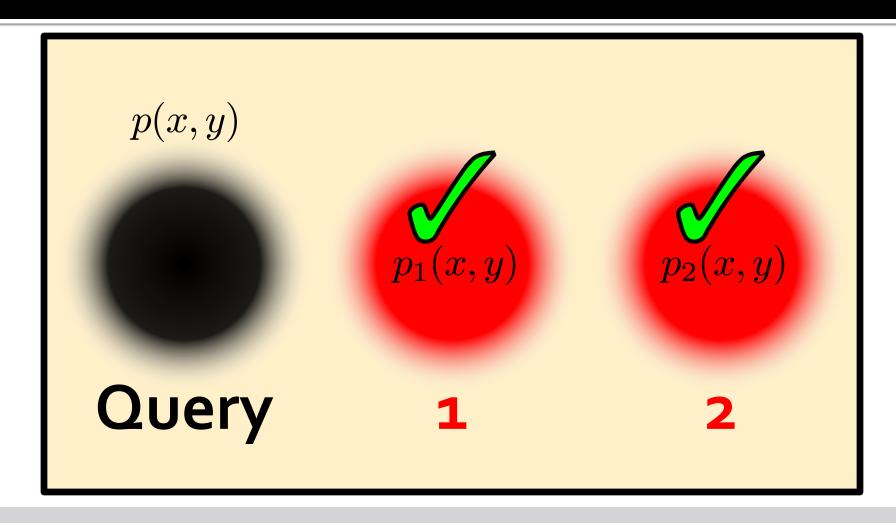
Typical Measurement



Returning to the Question

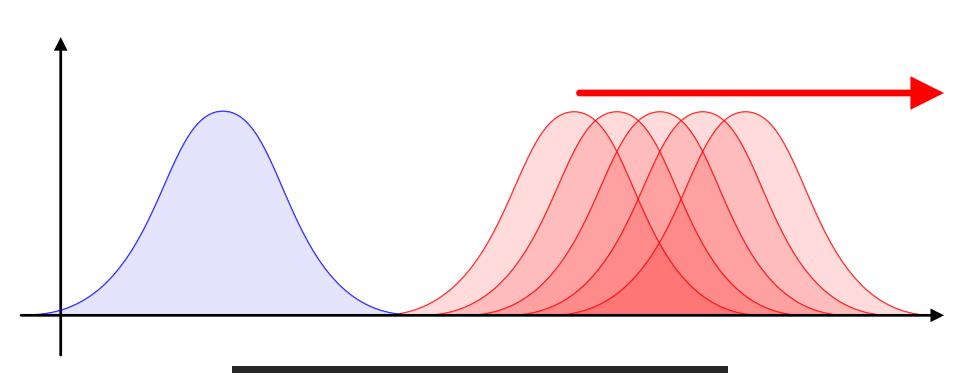


Returning to the Question



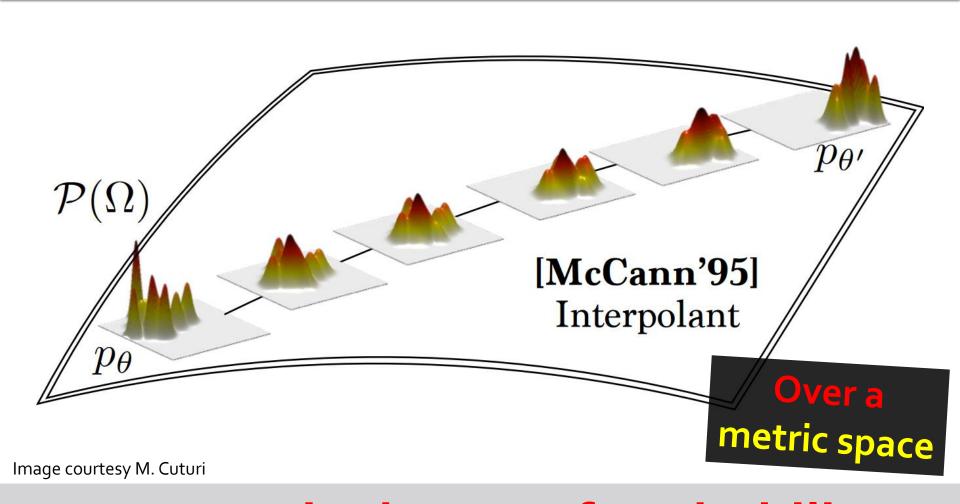
Neither! Equidistant.

What's Wrong?



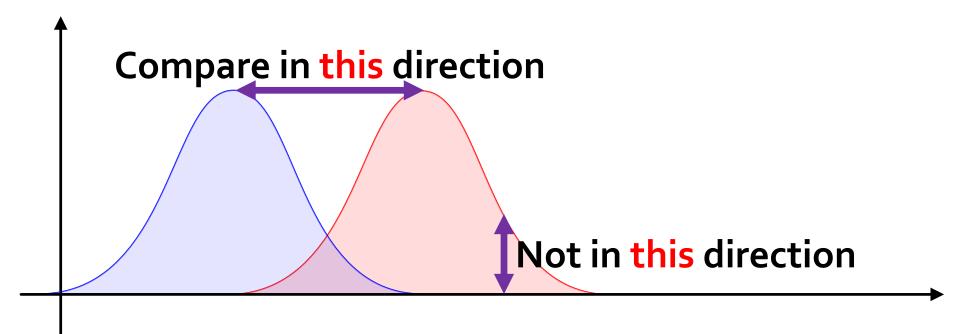
Measured overlap, not displacement.

Optimal Transport

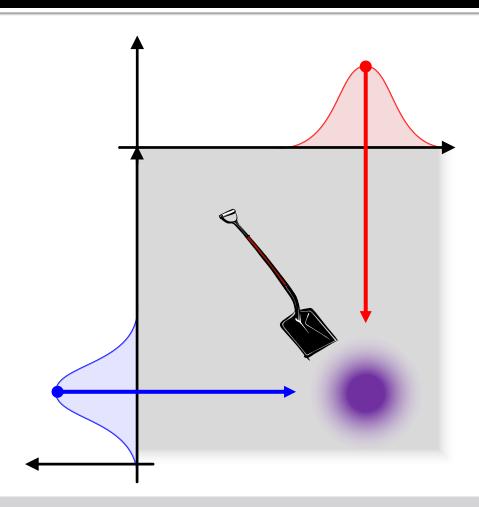


Geometric theory of probability

Alternative Idea



Alternative Idea



Match mass from the distributions

Transportation Matrix

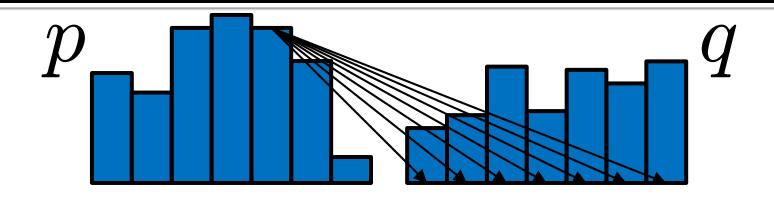
- Supply distribution p_0
- Demand distribution p_1

$$T \ge 0$$

$$T\mathbf{1} = p_0$$

$$T^{\mathsf{T}}\mathbf{1} = p_1$$

Earth Mover's Distance



$$\min_T \sum_{ij} T_{ij} d(x_i, x_j) \, extit{m} \cdot d(x,y)$$
 Starts at p Starts at q $\sum_i T_{ij} = q_j$ Ends at q Positive matrix

Starts at p

Ends at q

Positive mass

Important Theorem

EMD is a metric when d(x,y) satisfies the triangle inequality.

"The Earth Mover's Distance as a Metric for Image Retrieval"

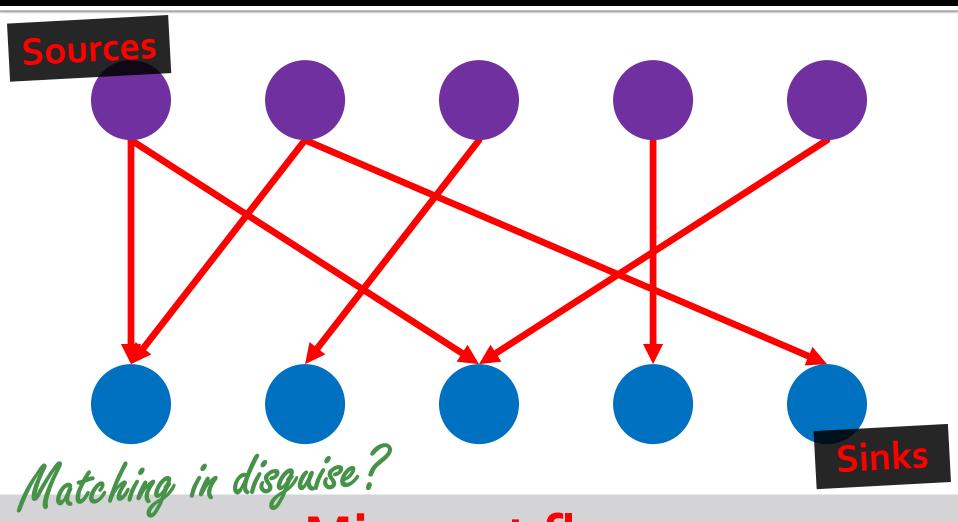
Rubner, Tomasi, and Guibas; IJCV 40.2 (2000): 99—121.

Revised in:

"Ground Metric Learning"

Cuturi and Avis; JMLR 15 (2014)

Discrete Perspective

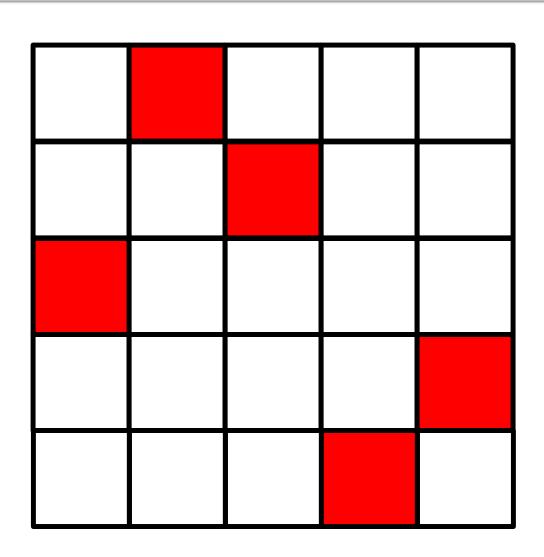


Min-cost flow

Algorithm for Small-Scale Problems

- Step 1: Compute D_{ij}
- Step 2: Solve linear program
 - Simplex
 - Interior point
 - Hungarian algorithm
 - ...

Transportation Matrix Structure



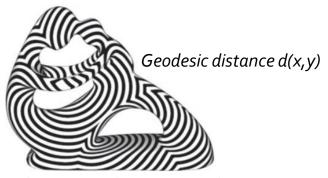
Matches bins

Underlying map!

p-Wasserstein Distance

$$\mathcal{W}_p(\mu, \nu) \equiv \min_{\pi \in \Pi(\mu, \nu)} \left(\iint_{X \times X} d(x, y)^p \, d\pi(x, y) \right)^{1/p}$$
Shortest path distance

General cost:
"Monge-Kantorovich
problem"



http://www.sciencedirect.com/science/article/pii/S152407031200029X#

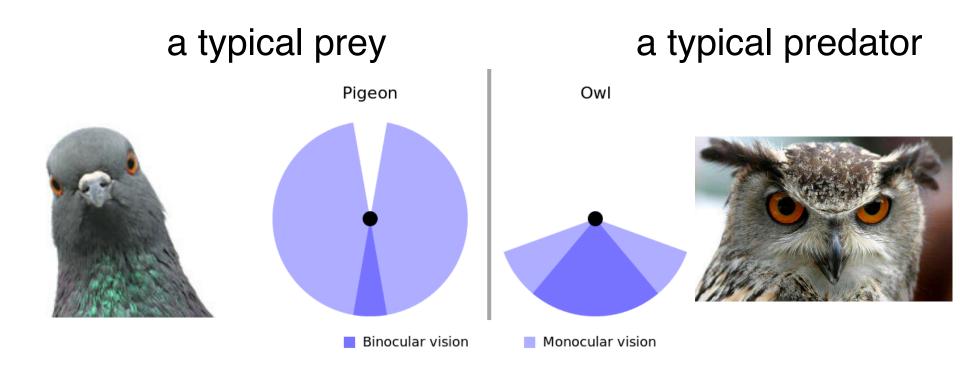
Continuous analog of EMD

Agenda

- Why point cloud?
- Comparison of point cloud
- Point cloud generation by deep learning

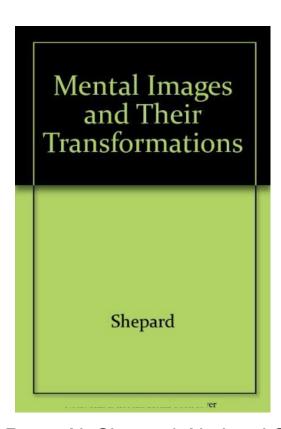
3D perception from a single image

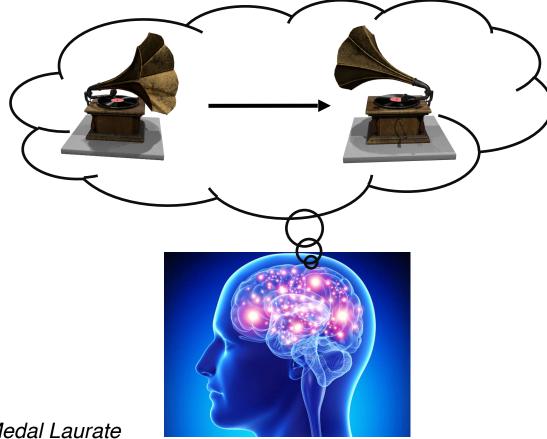
Monocular vision



Cited from https://en.wikipedia.org/wiki/Binocular_vision

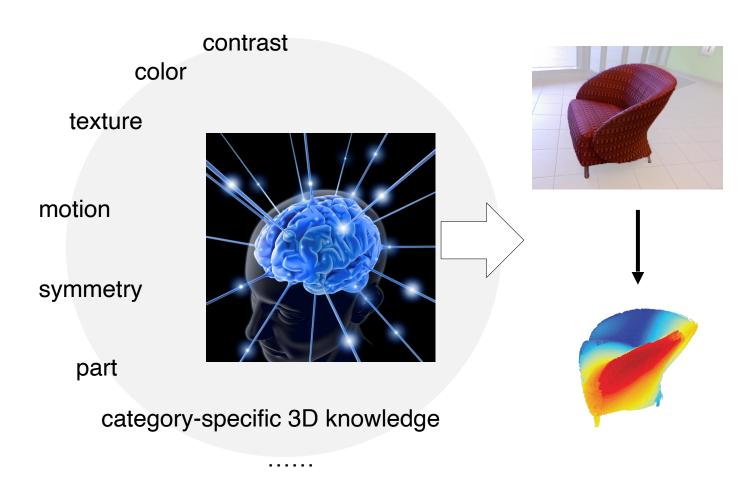
A psychological evidence – mental rotation





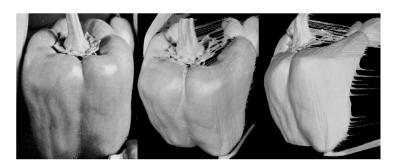
by Roger N. Shepard, National Science Medal Laurate and Lynn Cooper, Professor at Columbia University

Visual cues are complicated

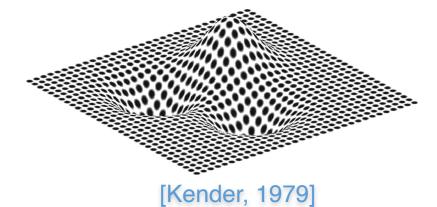


Status review of monocular vision algorithms

 Shape from X (texture, shading, ...)

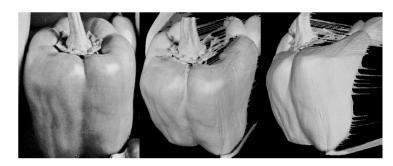


[Horn, 1989]

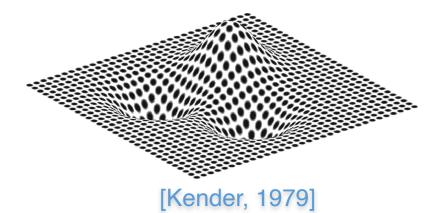


Status review of monocular vision algorithms

 Shape from X (texture, shading, ...)



[Horn, 1989]



Learning-based (from small data)

Hoiem et al, ICCV'05 Saxena et al, NIPS'05

large planes

- fine structure
- topological variatio
- ..

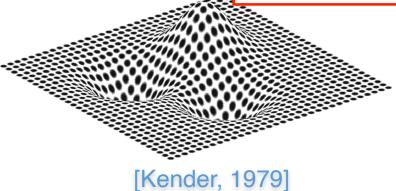
Status review of monocular vision algorithms

Shape from X (texture, shading, ...) Learning-based (from small data)

Hoiem et al, ICCV'05 Saxena et al, NIPS'05

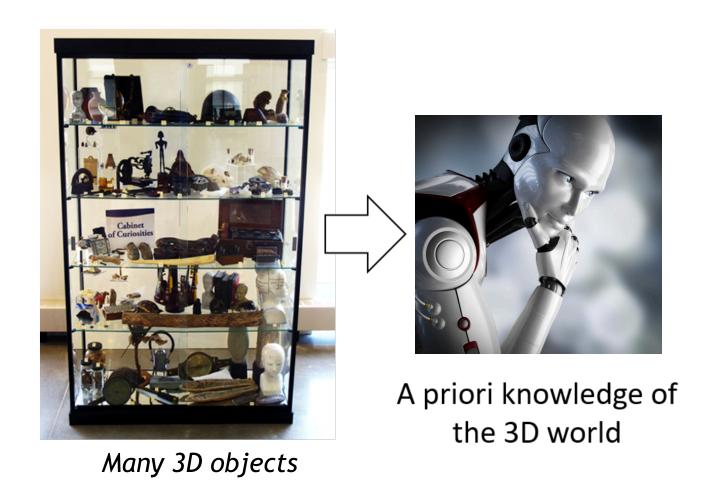
. . .

large planes



- fine structure
- topological variatio
- ...

Data-driven 2D-3D lifting



Our result: 3D reconstruction from real Images

CVPR 2017, A Point Set Generation Network for 3D Object Reconstruction from a Single Image

Input

Reconstructed 3D point cloud cvpR 17, Point Set Generation

Our result: 3D reconstruction from real Images

CVPR 2017, A Point Set Generation Network for 3D Object Reconstruction from a Single Image

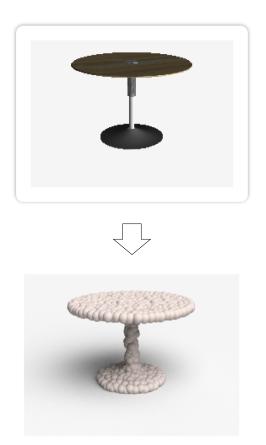
Input

Reconstructed 3D point cloud cvpR 17, Point Set Generation

3D point clouds

Flexible

 a few thousands of points can precisely model a great variety of shapes



CVPR '17, Point Set Generation

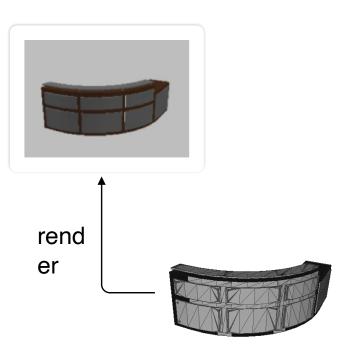
3D point clouds

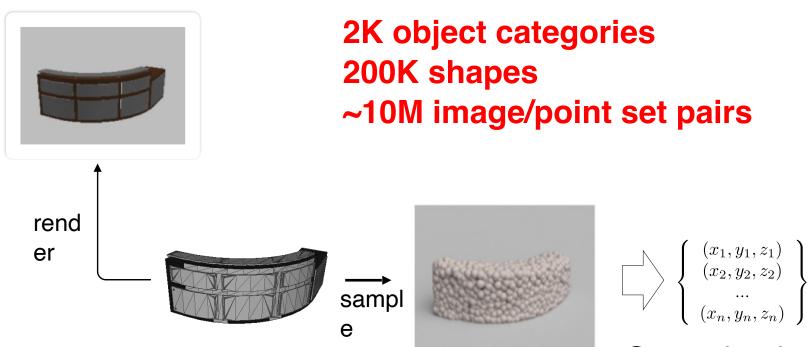
Flexible

 a few thousands of points can precisely model a great variety of shapes

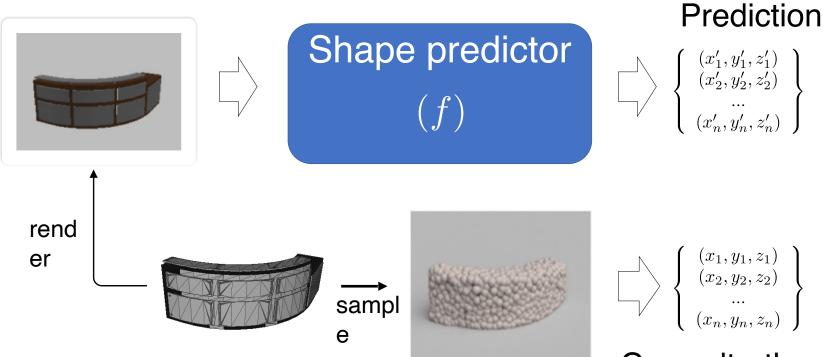
- deformable
- interpolable, extrapolable
- convenient to impose structural constraints

CVPR '17, Point Set Generation

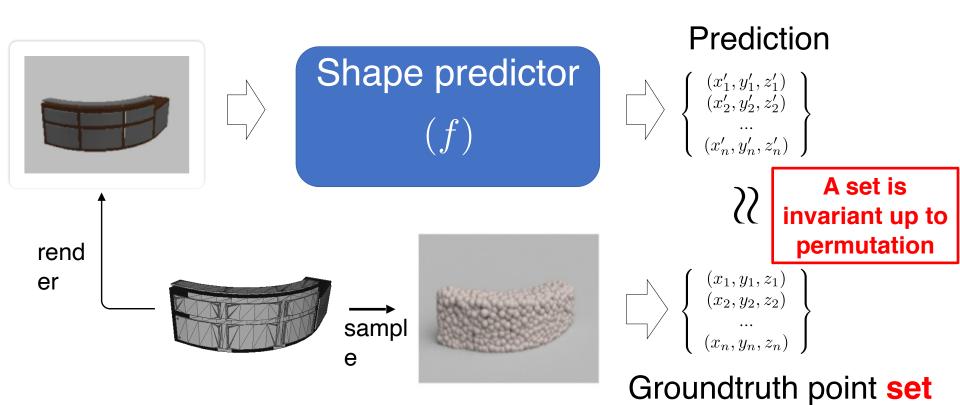


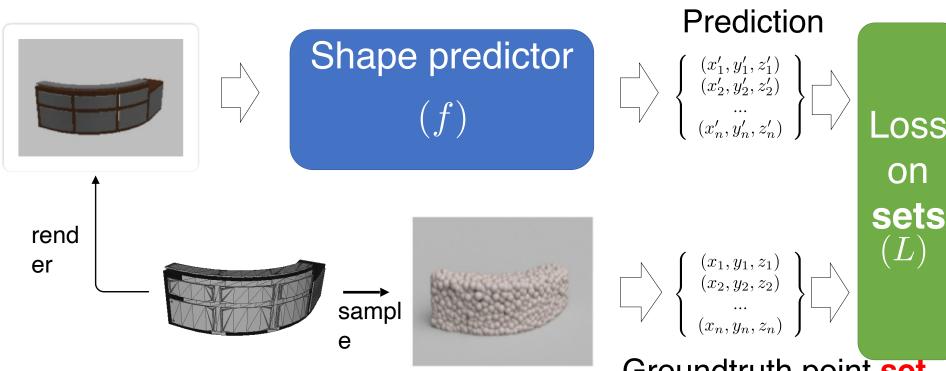


Groundtruth point set



Groundtruth point set



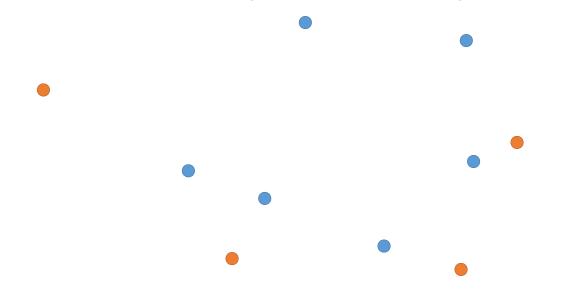


Groundtruth point set

Groundtruth point set

Set comparison

Given two sets of points, measure their discrepancy



Set comparison

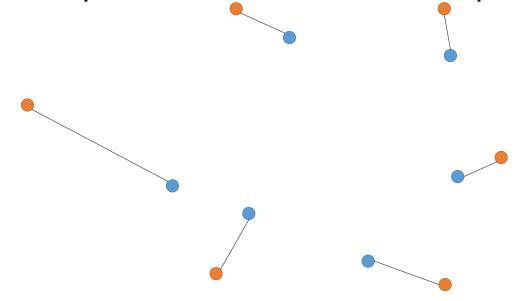
Given two sets of points, measure their discrepancy

Key challenge:

correspondence
problem

Correspondence (I): optimal assignment

Given two sets of points, measure their discrepancy

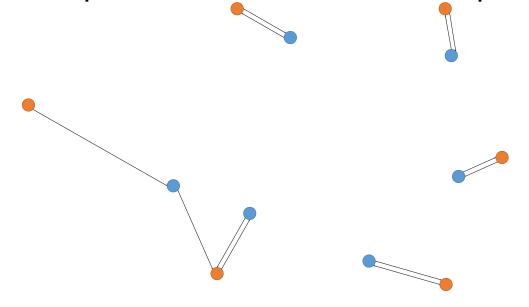


a.k.a Earth Mover's distance (EMD)

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$
 where $\phi: S_1 \to S_2$ is a bijection.

Correspondence (II): closest point

Given two sets of points, measure their discrepancy



a.k.a Chamfer distance (CD)

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

Required properties of distance metrics

Geometric requirement

Computational requirement

Required properties of distance metrics

Geometric requirement

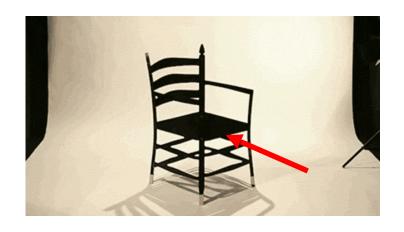
- Reflects natural shape differences
- Induce a nice space for shape interpolations

Computational requirement

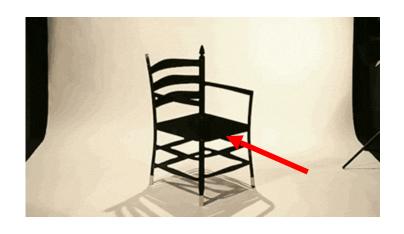
A fundamental issue: inherent ambiguity in 2D-3D dimension lifting

A fundamental issue: inherent ambiguity in 2D-3D dimension lifting

A fundamental issue: inherent ambiguity in 2D-3D dimension lifting



A fundamental issue: inherent ambiguity in 2D-3D dimension lifting



By loss minimization, the network tends to predict a

"mean shape" that averages out uncertainty

Distance metrics affect mean shapes

The mean shape carries characteristics of the distance metric

$$\bar{x} = \underset{x}{\operatorname{argmin}} \mathbb{E}_{s \sim \mathbb{S}}[d(x, s)]$$

continuous hidden variable (radius)

Input

EMD mean Chamfer mean cvpr '17, Point Set Generation

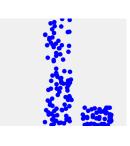
Mean shapes from distance metrics

The mean shape carries characteristics of the distance metric

$$\bar{x} = \underset{x}{\operatorname{argmin}} \mathbb{E}_{s \sim \mathbb{S}}[d(x, s)]$$

continuous hidden variable (radius)

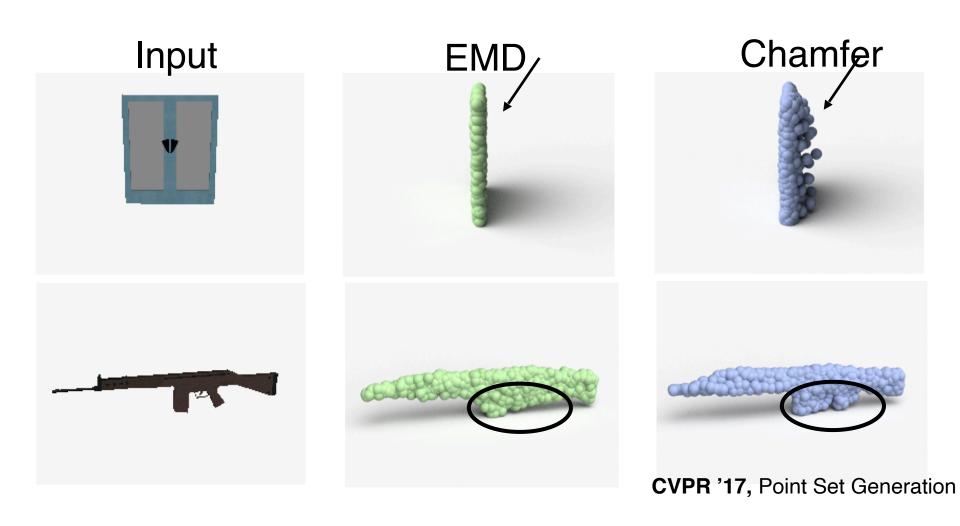
discrete hidden variable add-on location)



Input

EMD mean Chamfer mean

Comparison of predictions by EMD versus CD



Required properties of distance metrics

Geometric requirement

- Reflects natural shape differences
- Induce a nice space for shape interpolations

Computational requirement

Defines a loss function that is numerically easy to optimize

To be used as a loss function, the metric has to be

- Differentiable with respect to point locations
- Efficient to compute

Differentiable with respect to point location

Chamfer distance

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Earth Mover's distance

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$
 where $\phi: S_1 \to S_2$ is a bijection.

- Simple function of coordinates
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence does not change

Conclusion: differentiable almost everywhere

Differentiable with respect to point location

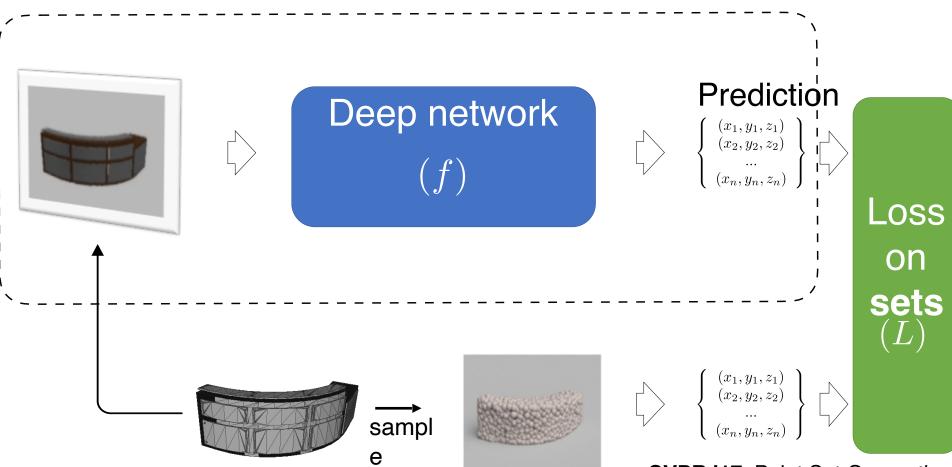
- For many algorithms (sorting, shortest path, network flow, ...),
- an infinitesimal change to model parameters (almost) does not change solution structure,

leads to differentiable a.e.!

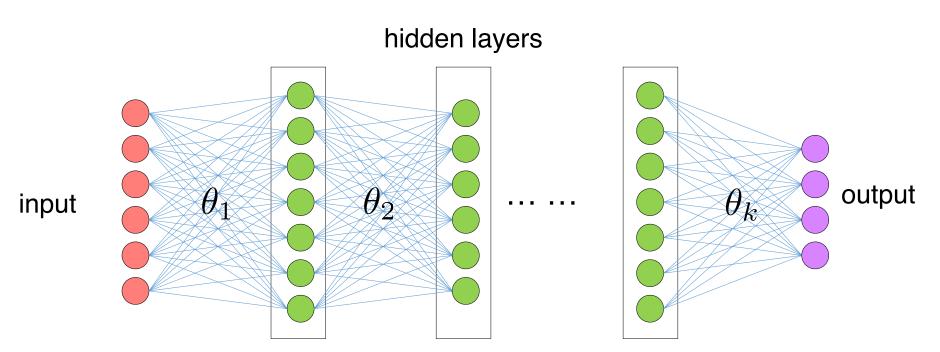
Efficient to compute

Chamfer distance: trivially parallelizable on CUDA Earth Mover's distance (optimal assignment):

- We implement a distributed approximation algorithm on CUDA
- Based upon [Bertsekas, 1985], $(1+\epsilon)$ -approximation



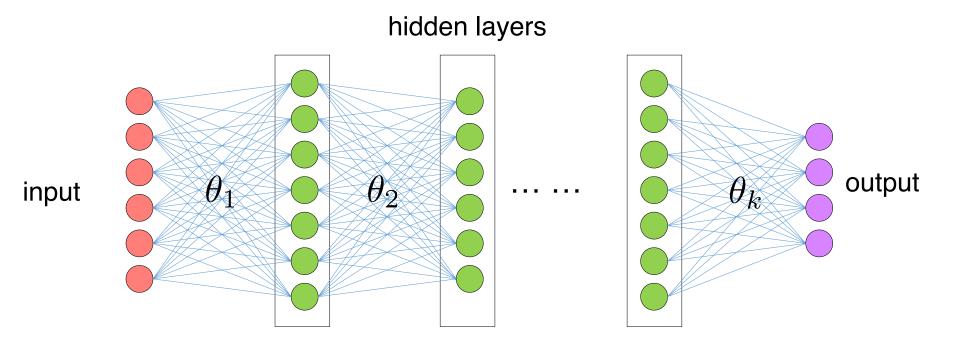
Deep neural network



Universal function approximator

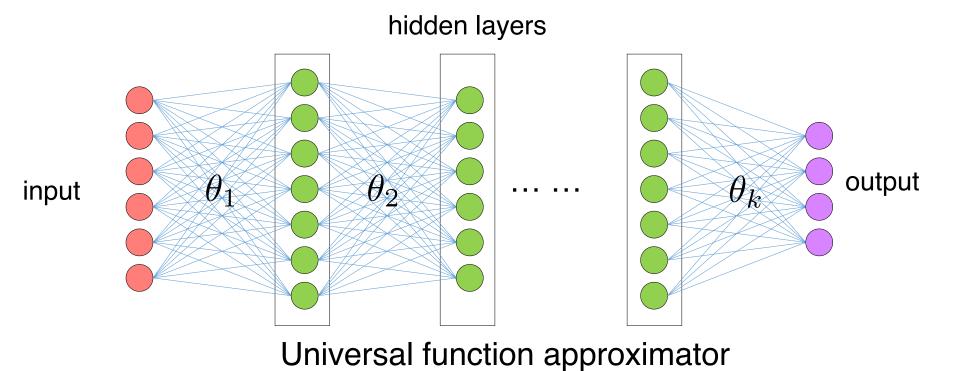
A cascade of layers

Deep neural network

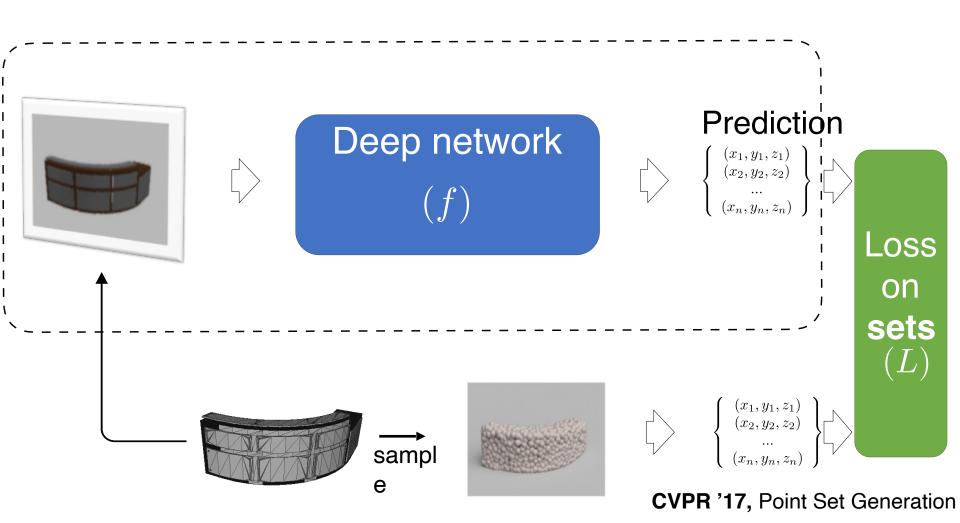


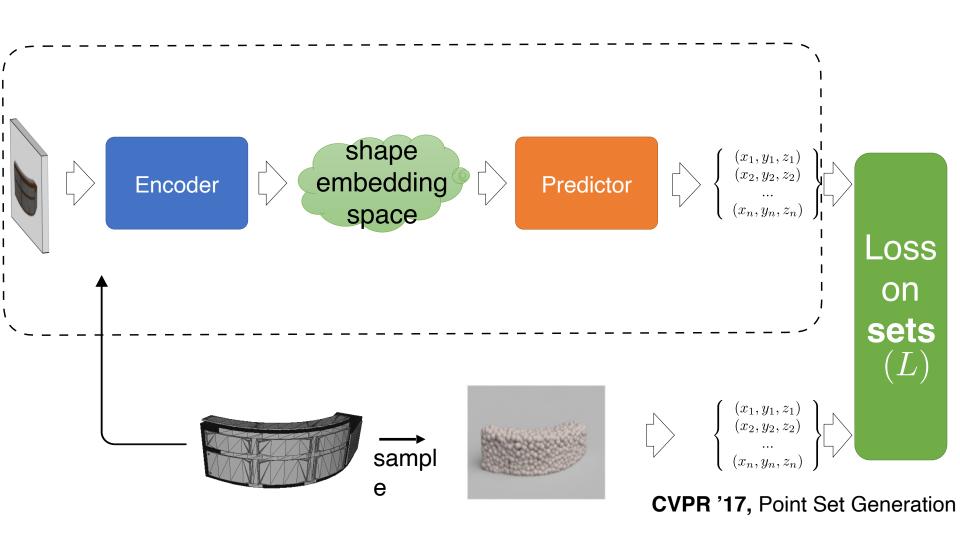
- Universal function approximator
- A cascade of layers
- Each layer conducts a simple transformation (parameterized)
 CVPR '17, Point Set Generation

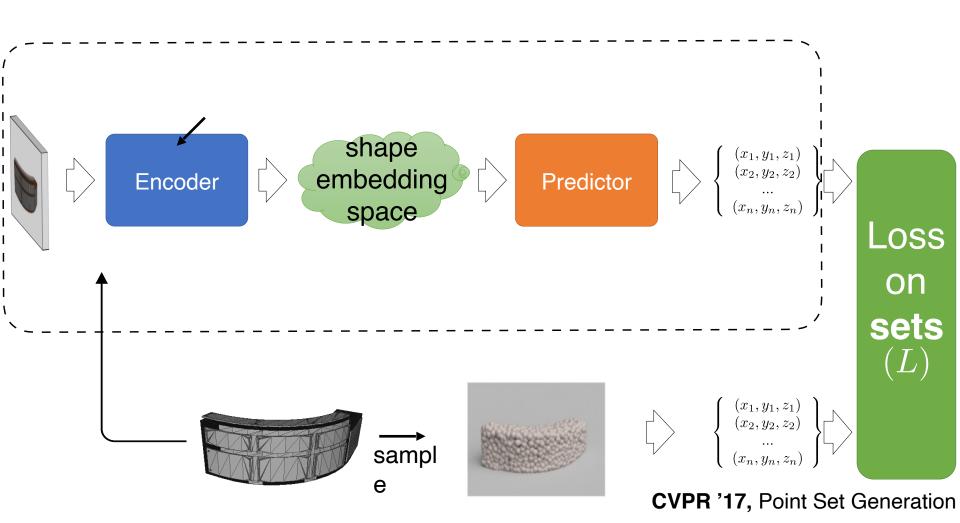
Deep neural network

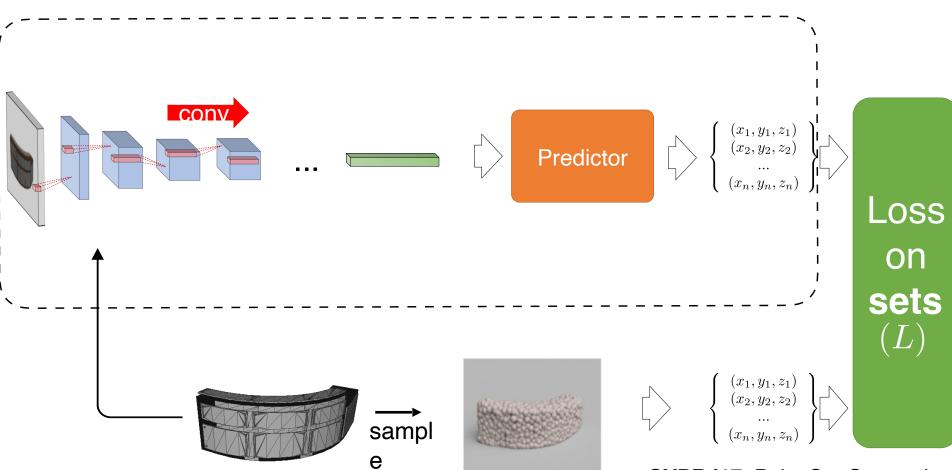


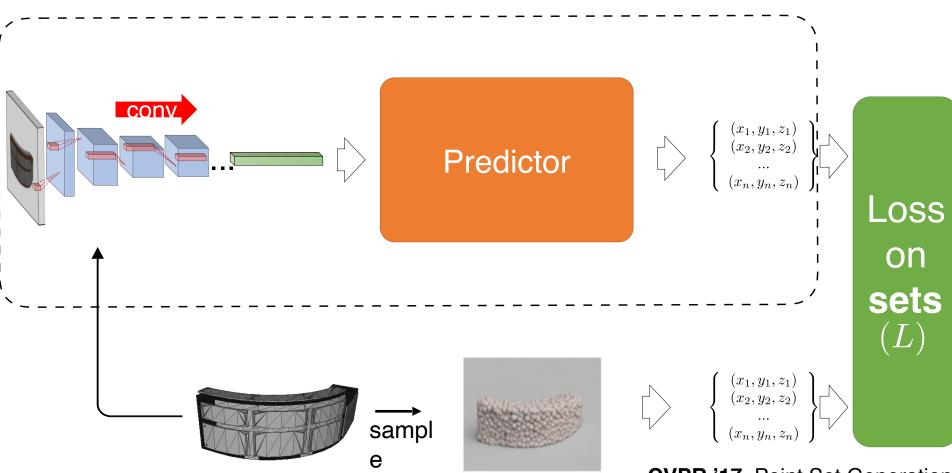
- A cascade of layers
- Each layer conducts a simple transformation (parameterized)
- Millions of parameters, has to be fitted by many data



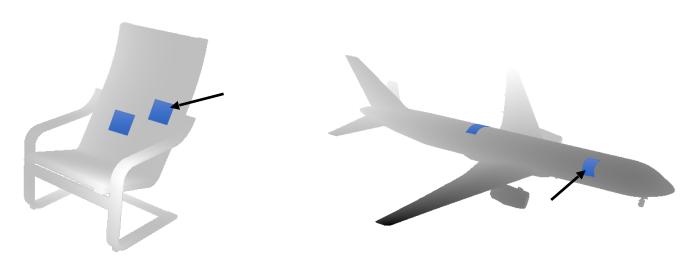






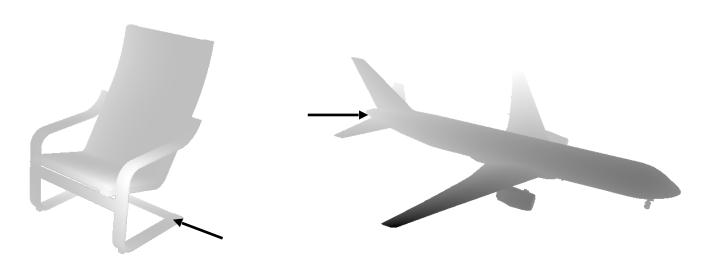


Natural statistics of geometry

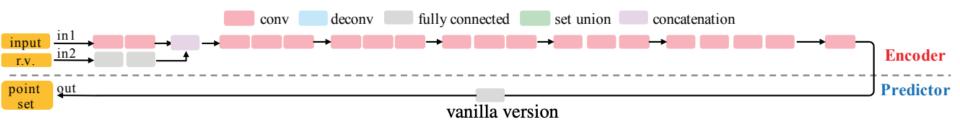


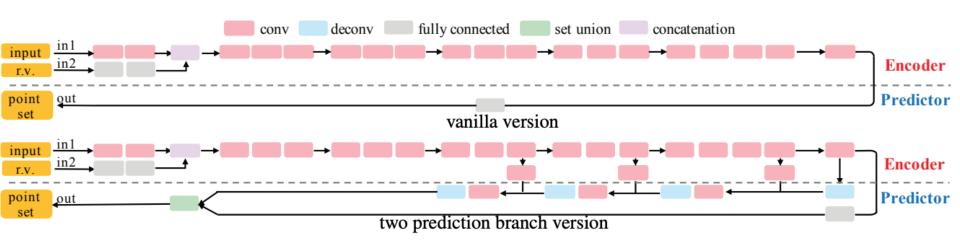
- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates

Natural statistics of geometry



- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates
- Also some intricate structures
 - points have high local variation





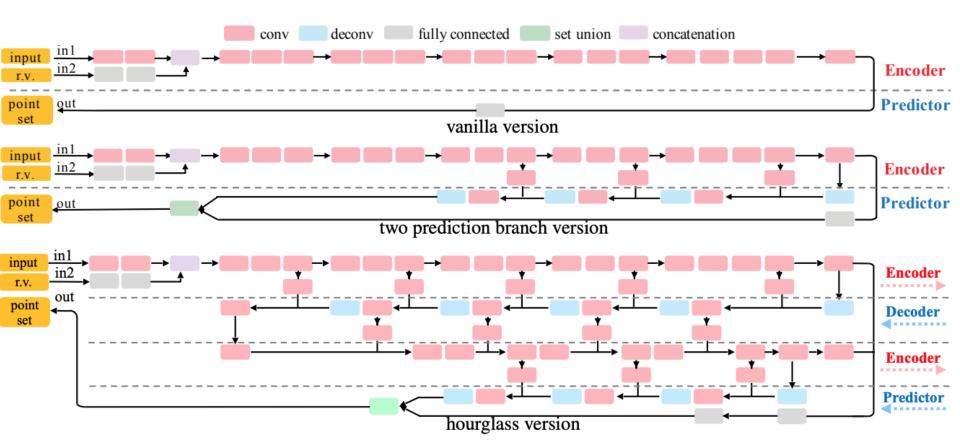


Figure 2. PointOutNet structure