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Chapter 1

Calculus of Euclidean Maps

The analytic study of surfaces involves multi-variable calculus. We begin
with a “brief review” of calculus in Rn. Let

Rn = n− dimensional Euclidean space

= {(x1, x2, x3, . . . , xn) : xi ∈ IR} .

(Note the superscripts; this is standard and traditional notation in differential
geometry stemming from tensor calculus.)

Standard inner product on Rn: x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn)
then,

〈x, y〉 = x · y = x1y1 + x2y2 + · · ·+ xnyn =
n∑
i=1

xiyi

Norm:

|x| =
√
〈x, x〉 =

√
(x1)2 + (x2)2 + · · ·+ (xn)2

=

√√√√ n∑
i=1

(xi)2

1
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Distance Function on IRn:

d(x, y) = |x− y| =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

=

√√√√ n∑
i=1

(xi − yi)2

Open sets in Rn:

Br(p) = open ball of radius r centered at p

= {x ∈ Rn : d(x, p) < r} .

Definition. U ⊂ Rn is open provided for each p ∈ U there exists ε > 0 such
that Bε(p) ⊂ U .

Euclidean Mappings: F : Rn → IRm

These are the types of maps that will arise most frequently in our study,
for example.

1) F : R → R3: parameterized curve in space, F (t) = (x(t), y(t), z(t)),
1-parameter map.

2) F : R2 → R3: parameterized surface in space, F (u, v) = (x(u, v), y(u, v), z(u, v)),
2-parameter map.

3) F : R2 → R2: change of coordinates, e.g. polar coordinates,

F :
x = r cos θ
y = r sin θ,

F (r, θ) = (r cos θ, r sin θ).
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Limits and Continuity:

Definition. Consider the map F : Rn → Rm. Assume F is defined in a
“deleted” neighborhood of x0 ∈ Rn. Then,

lim
x→x0

F (x) = L

means that for every ε > 0 there exists δ > 0 such that, |F (x) − L| < ε
whenever |x− x0| < δ (x 6= x0).

Definition. F : U ⊂ Rn → Rm. F is continuous at x0 ∈ U provided,

lim
x→x0

F (x) = F (x0).

F is continuous on U if it is continuous at each point of U .

The following fact gives a useful chararcterization of continuity.

Proposition 1.1. F : U ⊂ Rn → Rm is continuous on U iff for all open
sets V ⊂ Rm, F−1(V ) is open in Rn.

Component Functions:

Given F : U ⊂ Rn → Rm it is often useful to express F in terms of its
component functions:

F (x1, . . . , xn) = (y1, . . . , ym)

= (f 1(x1, . . . , xn), ...., fm(x1, . . . , xn))

= (f 1(x), . . . , fm(x)), x = (x1, . . . , xn).
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Then the component functions of F are: f i : U ⊂ Rn → R, i = 1, . . . ,m,
which we sometimes display as,

F :

y1 = f 1(x1, . . . , xn)
y2 = f 2(x1, . . . , xn)

...
ym = fm(x1, . . . , xn)

or,

F : yi = f i(x1, . . . , xn), i = 1, . . . ,m.

Example. F (x1, x2) = (2x1x2, x2 − x1)

F :
y1 = 2x1x2

y2 = x2 − x1

Example. F : R2 → R3, F (u, v) = ( uv2︸︷︷︸
x

, u cos v︸ ︷︷ ︸
y

, eu/v︸︷︷︸
z

)

F :
x = uv2

y = u cos v
z = eu/v

Proposition 1.2. F : U ⊂ Rn → Rm is continuous on U if and only if its
component functions f i : U ⊂ Rn → R, i = 1, . . . ,m, is continuous on U .

Differentiation of Mappings

Definition. Given f : U ⊂ Rn → R. f is Ck on U provided f and its partial
derivatives of order up to, and including, k are continuous on U . f is C∞ on
U (or smooth on U) provided f and its partial derivatives of all orders exist
and are continuous on U .

Example. f : U ⊂ R2 → R. f(x, y) f is C2 means that f,
∂f

∂x
,
∂f

∂y
,
∂2f

∂x2
,

∂2f

∂x∂y
,
∂2f

∂y∂x
,
∂2f

∂y2
exist and are continuous on U .
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Example. f : R2 → R. f(x, y) = x2 + 3xy − y2. f is C∞ on R2.

Example. f(x, y) = ln(1− x2 − y2). f is C∞ on U = {(x, y) : x2 + y2 < 1}.

EXERCISE 1.1. Construct a function f : R→ R which is C1 but not C2.

Definition. Given F : U ⊂ Rn → Rm. F is Ck on U iff its component
functions f 1, . . . , fm are Ck on U . F is C∞ (smooth) on U iff f 1, . . . , fm are
C∞ (smooth) on U .

Example. F : R2 → R3, F (x, y) = (x cos y, x sin y, exy). f 1(x, y) = x cos y, f 2(x, y) =
x sin y, f 3(x, y) = exy are smooth. Therefore F is smooth.

Remark. We will usually assume the mappings we deal with are smooth - even
though some results might be true with weaker differentiability assumptions.

Chain Rule for real valued functions of several variables:

Given a smooth function of n variables, w = f(x1, . . . , xn) where xi =
xi(t, . . .), i = 1, · · · , n, depend smoothly on t. Then the composition w =
f(x1(t, . . .), . . . , xn(t, . . .)) depends smoothly on t and,

∂w

∂t
=
∂w

∂x1

∂x1

∂t
+
∂w

∂x2

∂x2

∂t
+ · · ·+ ∂w

∂xn
∂xn

∂t

or, using summation notation,

∂w

∂t
=

n∑
i=1

∂w

∂xi
· ∂x

i

∂t
.

Jacobians:

Definition. Given F : U ⊂ Rn → Rm smooth with component functions,

F : yi = f i(x1, . . . , xn), i = 1, . . . ,m.

(⇔ f i : U ⊂ Rn → R smooth), the Jacobian Matrix of F is the m×n matrix,
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DF =



∂y1

∂x1

∂y1

∂x2
. . .

∂y1

∂xn

∂y2

∂x1

∂y2

∂x2
. . .

∂y2

∂xn

...
...

∂ym

∂x1

∂ym

∂x2
. . .

∂ym

∂xn


,

or, in short hand,

DF =

[
∂yi

∂xj

]
1≤i≤m
1≤j≤n

.

At p ∈ Rn,

DF (p) =

[
∂yi

∂xj
(p)

]
.

Alternative notation: J(F ) = DF .

Example. F : R2 → R3, F (x, y) = (x2 + y2︸ ︷︷ ︸
y1

, 2xy︸︷︷︸
y2

, x cos y︸ ︷︷ ︸
y3

). DF is 3× 2:

DF =

 2x 2y
2y 2x
cos y −x sin y

 .

Remark. For ordinary real function f : R → R, y = f(x), DF is just the

1× 1 matrix

[
dy

dx

]
, and so DF is essentially just the derivative of y = f(x).

For mappings, the Jacobian plays the role of first derivative.
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Jacobian Determinant: Consider special case m = n. F : U ⊂ Rn → Rn,

F : yi = f i(x1, . . . , xn), i = 1, . . . , n.

Then DF is a square n×n matrix. The Jacobian determinant is then defiend
as,

Jacobian determinant = detDF

∂(y1, . . . , yn)

∂(x1, . . . , xn)
. = det

[
∂yi

∂xj

]
.

Example. For the map, F : R2 → R2, F (x, y) = (x2 − y2, 2xy).

F :
u = x2 − y2

v = 2xy

DF is given by,

DF =


∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

 =

[
2x −2y
2y 2x

]

∂(u, v)

∂(x, y)
= detDF = 4(x2 + y2)

Chain Rule for Mappings.

The Calculus I chain rule may be written as follows: Given functions
f : R→ R and g : R→ R, then (f ◦ g)′ = f ′ · g′.

Theorem 1.3 (Chain rule). Given smooth maps F : V ⊂ Rm → R`, G : U ⊂
Rn → Rm such that G(U) ⊂ V . Then the composition F ◦G : U ⊂ Rn → R`

is defined and smooth, and

D(F ◦G)(x) = DF (G(x))DG(x)

or simply,

D(F ◦G)`×n = DF ·DG︸ ︷︷ ︸
matrix multiplication

`×m m×n
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Proof. Apply the chain rule for real valued functions of several variables.
First, recall, if A = [aij]`×m and B = [bij]m×n then the product matrix
C = AB = [cik]`×n has entries given by,

cik =
∑
j

aijbjk

(ith row of A dotted into kth column of B)

Now, express F,G and F ◦G in terms of component functions:

F : zi = f i(y1, . . . , ym), 1 ≤ i ≤ `

G : yj = gj(x1, . . . , xn), 1 ≤ j ≤ m

F ◦G : zi = f i(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)), 1 ≤ i ≤ `.

For each 1 ≤ k ≤ n : zi depends on the yj’s and the yj’s depend on xk.
Therefore zi depends on xk and by the CR for real valued functions of several
variables,

∂zi

∂xk
=

m∑
j=1

∂zi

∂yj
∂yj

∂xk

The term being summed is the i, kth entry of the matrix product,

[
∂zi

∂yj

]
·
[
∂yj

∂xk

]
,

and hence, [
∂zi

∂xk

]
=

[
∂zi

∂yj

]
·
[
∂yj

∂xk

]
,

or,

D(F ◦G) = DF ·DG.
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The Inverse Function Theorem

Analytically the Jacobian of F : Rn → Rm plays a role analogous to f ′

for functions f : R → R. For example just as the derivative can be used to
approximate f ,

f(x+4x) ≈ f(x) + f ′(x)4x,

the Jacobian can be used to approximate F : Rn → Rm,

F (p+4p) ≈ F (p) +DF (p)︸ ︷︷ ︸
m×n

4p︸︷︷︸
n×1

(provided F is C1 - this all can be made very precise). In the above expres-
sion we are treating points in Rn and Rm as column vectors.

Recall, given a smooth function f : R → R, if f ′(x0) 6= 0 then on a
small interval I about x0, f is either increasing (f ′(x0) > 0) or decreasing
(f ′(x0) < 0). In either case f has an inverse f−1 on I and

(f−1)′(y) =
1

f ′(f−1(y))
= [f ′(f−1(y))]−1

or, more simply,

(f−1)′ =
1

f ′
= (f ′)−1

or, in differential notation, if y = f(x) then x = f−1(y) and,

dx

dy
=

1

dy

dx

=

(
dy

dx

)−1

.

Theorem 1.4 (Inverse function Theorem). . Let F : U ⊂ Rn → Rn

be a smooth map. Suppose for some p ∈ U , DF (p) is nonsingular (⇔
detDF (p) 6= 0). Then there is a nbd V of p such that

1. W = F (V ) is open.

2. F : V → W is one-to-one and onto, and F−1 : W → V is smooth.
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3. For each q ∈ W ,

D(F−1)(q) = [DF (F−1(q))]−1 ,

or simply,
D(F−1) = (DF )−1 .

EXERCISE 1.2. Assuming (1) and (2) hold, show that (3) necessarily
holds. Hint: Differentiate both sides of the equation: F ◦ F−1 = id (where
id : Rn → Rn is the identity map, id(x) = x for all x ∈ Rn)

Remark. Let V , W be open sets in Rn. A map F : V → W is called a
diffeomorphism provided it is 1-1 and onto, and both F and F−1 are smooth.
Conditions (1) and (2) in the IFT say that F : V → W is a diffeomorphism.

Remark. Let’s specialize the statement of the IFT to the case n = 2. Hence,
consider F : U ⊂ R2 → R2, F (x, y) = (u(x, y), v(x, y)), i.e. F has compo-
nent functions

F :
u = u(x, y)
v = v(x, y)

(x, y) ∈ U (∗)

F is smooth ⇔ u = u(x, y), v = v(x, y) are smooth, and so,

DF =


∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y


Let p = (x0, y0) ∈ U be such that detDF (x0, y0) 6= 0, and hence,
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det


∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

 6= 0 at (x0, y0).

Then, according to the IFT, there exists a neighborhood V of (x0, y0) such
that W = F (V ) is an open set in the u-v plane, and F−1 : W → V is defined
and smooth. We have F−1(u, v) = (x(u, v), y(u, v)), i.e. F−1 has component
functions,

F−1 :
x = x(u, v)
y = y(u, v)

(u, v) ∈ W

i.e. the equations (∗) can be smoothly inverted to obtain x and y in terms
of u and v. Moreover, when evaluated at the appropriate points,

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

 =


∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y


−1



Chapter 2

Parameterized Curves in R3

Definition. A smooth curve in R3 is a smooth map σ : (a, b)→ R3.

For each t ∈ (a, b), σ(t) ∈ R3. As t increases from a to b, σ(t) traces out a
curve in R3. In terms of components,

σ(t) = (x(t), y(t), z(t)) , (2.1)

or

σ :
x = x(t)
y = y(t)
z = z(t)

a < t < b ,

velocity at time t:
dσ

dt
(t) = σ′(t) = (x′(t), y′(t), z′(t)) .

speed at time t:

∣∣∣∣dσdt (t)

∣∣∣∣ = |σ′(t)|

12
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Example. σ : R→ R3, σ(t) = (r cos t, r sin t, 0) - the standard parameteri-
zation of the unit circle,

σ :
x = r cos t
y = r sin t
z = 0

has velocity and speed,

σ′(t) = (−r sin t, r cos t, 0)

|σ′(t)| = r (constant speed)

Example. σ : R → R3, σ(t) = (r cos t, r sin t, ht), r, h > 0 constants (the
helix), has velocity and speed,

σ′(t) = (−r sin t, r cos t, h)

|σ′(t)| =
√
r2 + h2 (constant)

Definition. A regular curve in R3 is a smooth curve σ : (a, b) → R3 such
that σ′(t) 6= 0 for all t ∈ (a, b).

That is, a regular curve is a smooth curve with everywhere nonzero velocity.
The examples above are regular.

Example. σ : R → R3, σ(t) = (t3, t2, 0). σ is smooth, but not regular. σ
has velocity,

σ′(t) = (3t2, 2t, 0) , σ′(0) = (0, 0, 0)

Graph of σ:

σ :
x = t3

y = t2

z = 0
⇒ y = t2 = (x1/3)2

y = x2/3

Hence, the graph is as follows,
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There is a cusp, not because the curve isn’t smooth, but because the
velocity = 0 at the origin. A regular curve has a well-defined smoothly
turning tangent, and hence its graph will appear smooth.

The Geometric Action of the Jacobian

Given a smooth map F : U ⊂ R3 → R3, p ∈ U . Let X be any vector
based at the point p. To X at p we associate a vector Y at F (p) as follows.

Let σ : (−ε, ε)→ R3 be any smooth curve such that,

σ(0) = p and
dσ

dt
(0) = X,

i.e. σ is a curve which passes through p at t = 0 with velocity X. (E.g.
one can take σ(t) = p + tX.) Now, look at the image of σ under F , i.e.
consider β = F ◦ σ, β : (−ε, ε)→ R3, β(t) = F ◦ σ(t) = F (σ(t)). We have,
β(0) = F (σ(0)) = F (p), i.e., β passes through F (p) at t = 0. Finally, let

Y =
dβ

dt
(0).

i.e. Y is the velocity vector of β at t = 0.

EXERCISE 2.1. Show that Y = DF (p)X.
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Note: In the above, X and Y are represented as column vectors, and the
right hand side of the equation involves matrix multiplication. Hint: Use the
chain rule.

Thus, roughly speaking, the geometric effect of the Jacobian is to “send
velocity vectors to velocity vectors”. The same result holds for mappings
F : U ⊂ Rn → Rm (i.e. it is not necessary to restrict to dimension three).

Reparameterizations

Given a regular curve σ : (a, b) → R3. Traversing the same path at a
different speed (and perhaps in the opposite direction) amounts to what is
called a reparameterization.

Definition. Let σ : (a, b) → R3 be a regular curve. Let h : (c, d) ⊂ R →
(a, b) ⊂ R be a diffeomorphism (i.e. h is 1-1, onto such that h and h−1

are smooth). Then σ̃ = σ ◦ h : (c, d) → R3, is a regular curve, called a
reparameterization of σ.

I.e., start with a curve σ = σ(t), make a change of parameter t = h(u), then
obtain the reparameterized curve σ̃ given by,

σ̃(u) = σ(h(u)) .

t = original parameter, u = new parameter.

Remarks:

1. σ and σ̃ describe the same path in space, just traversed at different
speeds (and perhaps in opposite directions).

2. Compare velocities:

σ̃ = σ(h(u)) i.e.,

σ̃ = σ(t), where t = h(u) .

Hence, by the chain rule,

dσ̃

du
=
dσ

dt
· dt
du

=
dσ

dt
· h′

h′ > 0: orientation preserving reparameterization.
h′ < 0: orientation reversing reparameterization.
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Example. σ : (0, 2π) → R3, σ(t) = (cos t, sin t, 0). Consider the reparame-
terization function, h : (0, π)→ (0, 2π),

h : t = h(u) = 2u , u ∈ (0, π) .

Reparameterized curve:

σ̃(u) = σ(t) = σ(2u)

σ̃(u) = (cos 2u, sin 2u, 0)

σ̃ describes the same circle, but traversed twice as fast,

speed of σ =

∣∣∣∣dσdt
∣∣∣∣ = 1 , speed of σ̃ =

∣∣∣∣dσ̃du
∣∣∣∣ = 2 .

Remark. Regular curves always admit a very important reparameterization:
they can always be parameterized in terms of arc length (see below).

Length Formula: Consider a smooth curve defined on a closed interval,
σ : [a, b]→ R3.

σ is a smooth curve segment. Its length is defined by,

length of σ =

∫ b

a

|σ′(t)|dt.

I.e., to get the length, integrate speed wrt time.

Example. σ(t) = (r cos t, r sin t, 0) 0 ≤ t ≤ 2π.

Length of σ =

∫ 2π

0

|σ′(t)|dt =

∫ 2π

0

rdt = 2πr.
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Proposition 2.1. The length formula is independent of parameterization,
i.e., if σ̃ : [c, d] → R3 is a reparameterization of σ : [a, b] → R3 then length
of σ̃ = length of σ.

EXERCISE 2.2. Prove this. (See e.g., [2, Prop. 2.1].)

Arc Length Parameter:

Along a regular curve σ : (a, b) → R3 there is a distinguished parameter
called arc length parameter. Fix t0 ∈ (a, b). Define the following function
(arc length function).

s = s(t), t ∈ (a, b) , s(t) =

∫ t

t0

|σ′(t)|dt .

Thus,

if t > t0, s(t) = length of σ from t0 to t,

if t < t0, s(t) = −length of σ from t0 to t.

s = s(t) is smooth and by the Fundamental Theorem of calculus,

s′(t) = |σ′(t)| > 0 for all t ∈ (a, b)

Hence s = s(t) is strictly increasing, and so has a smooth inverse - can solve
smoothly for t in terms of s, t = t(s) (reparameterization function).

Then,
σ̃(s) = σ(t(s))

is the arc length reparameterization of σ.
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Proposition 2.2. A regular curve admits a reparameterization in terms of
arc length.

Example. Reparameterize the circle σ(t) = (r cos t, r sin t, 0), −∞ < t <
∞, in terms of arc length parameter.

Obtain the arc length function s = s(t),

s =

∫ t

0

|σ′(t)|dt =

∫ t

0

rdt

s = rt ⇒ t =
s

r
(reparam. function)

Hence,

σ̃(s) = σ(t(s)) = σ
(s
r

)
σ̃(s) = (r cos

(s
r

)
, r sin

(s
r

)
, 0).

Remarks:

1. Often one relaxes the notation and writes σ(s) for σ̃(s) (i.e. one drops the
tilde).

2. Let σ = σ(t), t ∈ (a, b) be a unit speed curve, |σ′(t)| = 1 for all t ∈ (a, b).
Then,

s =

∫ t

t0

|σ′(t)|dt =

∫ t

t0

1dt

s = t− t0 .

I.e. up to a trivial translation of parameter, s = t. Hence unit speed curves
are already parameterized wrt arc length (as measured from some point).
Conversely, if σ = σ(s) is a regular curve parameterized wrt arc length s then
σ is unit speed, i.e. |σ′(s)| = 1 for all s (why?). Hence the phrases “unit speed
curve” and “curve parameterized wrt arc length” are used interchangably.

EXERCISE 2.3. Consider the helix,

σ(t) = (r cos t, r sin t, ht).

Show that, when parameterized wrt arc length, we obtain,
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σ(s) = (r cosωs, r sinωs, hωs) .

where ω =
1√

r2 + h2
.

Vector fields along a curve.

We will frequently use the notion of a vector field along a curve σ.

Definition. Given a smooth curve σ : (a, b)→ R3 a vector field along σ is a
vector-valued map X : (a, b) → R3 which assigns to each t ∈ (a, b) a vector
X(t) at the point σ(t).

Some examples:

1. The velocity vector field along σ : (a, b)→ R3.

σ′ : (a, b)→ R3, t→ σ′(t) .

If σ(t) = (x(t), y(t), z(t)), σ′(t) = (x′(t), y′(t), z′(t)).

2. The unit tangent vector field along σ,

T (t) =
σ′(t)

|σ′(t)|
,

|T (t)| = 1 for all t. (Note σ must be regular for T to be defined).
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Example. Find the unit tangent vector field along σ(t) = (r cos t, r sin t, ht).

σ′(t) = (−r sin t, r cos t, h)

|σ′(t)| =
√
r2 + h2

T (t) =
1√

r2 + h2
(−r sin t, r cos t, h)

Note. If s → σ(s) is parameterized wrt arc length then |σ′(s)| = 1 (unit
speed) and so,

T (s) = σ′(s) . (2.2)

Differentiation. Analytically, vector fields along a curve are just maps,

X : (a, b) ⊂ R→ R3.

Can differentiate by expressing X = X(t) in terms of components,

X(t) = (X1(t), X2(t), X3(t)) ,

dX

dt
=

(
dX1

dt
,
dX2

dt
,
dX3

dt

)
.

Example. Consider the unit tangent field to the helix,

T (t) =
1√

r2 + h2
(−r sin t, r cos t, h)

T ′(t) =
1√

r2 + h2
(−r cos t,−r sin t, 0).

EXERCISE 2.4. Let X = X(t) and Y = Y (t) be two smooth vector fields
along σ : (a, b)→ R3. Prove the following product rules,

(1)
d

dt
〈X, Y 〉 = 〈dX

dt
, Y 〉+ 〈X, dY

dt
〉

(2)
d

dt
X × Y =

dX

dt
× Y +X × dY

dt

Hint: Express in terms of components.
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Curvature

Curvature of a curve is a measure of how much a curve bends at a given
point:

This is quantified by measuring the rate at which the unit tangent turns wrt
distance along the curve. Given a regular curve, t→ σ(t), reparameterize in
terms of arc length, s→ σ(s), and consider the unit tangent vector field,

T = T (s) (T (s) = σ′(s)).

Now differentiate T = T (s) wrt arc length,

dT

ds
= curvature vector

.

The direction of
dT

ds
tells us which way the curve is bending. Its magnitude

tells us how much the curve is bending,∣∣∣∣dTds
∣∣∣∣ = curvature

Definition. Let s→ σ(s) be a unit speed curve. The curvature κ = κ(s) of
σ is defined as follows,

κ(s) = |T ′(s)| (= |σ′′(s)|) ,

where ′ = d
ds

.

Example. Compute the curvature of a circle of radius r.

Standard parameterization: σ(t) = (r cos t, r sin t, 0).

Arc length parameterization: σ(s) =
(
r cos

(s
r

)
, r sin

(s
r

)
, 0
)
.
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Then we compute,

T (s) = σ′(s) =
(
− sin

(s
r

)
, cos

(s
r

)
, 0
)

T ′(s) =

(
−1

r
cos
(s
r

)
,−1

r
sin
(s
r

)
, 0

)
= −1

r

(
cos
(s
r

)
, sin

(s
r

)
, 0
)

κ(s) = |T ′(s)| = 1

r

(Does this answer agree with intuition?)

EXERCISE 2.5. Let s→ σ(s) be a unit speed plane curve,

σ(s) = (x(s), y(s), 0) .

For each s let φ(s) = angle between positive x-axis and T (s)

Show: κ(s) = |φ′(s)| =

∣∣∣∣dφds
∣∣∣∣. Hint: Observe, T (s) = cosφ(s)i + sinφ(s)j

(why?).

Conceptually, the definition of curvature is the right one. But for compu-
tational purposes it’s not so good. For one thing, it would be useful to have
a formula for computing curvature which does not require that the curve
be parameterized with respect to arc length. Using the chain rule, such a
formula is easy to obtain.

Given a regular curve t→ σ(t), it can be reparameterized wrt arc length
s→ σ(s). Let T = T (s) be the unit tangent field to σ; we have,

T = T (s), s = s(t) .
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So by the chain rule,

dT

dt
=

dT

ds
· ds
dt

=
dT

ds

∣∣∣∣dσdt
∣∣∣∣∣∣∣∣dTdt

∣∣∣∣ =

∣∣∣∣dσdt
∣∣∣∣ ∣∣∣∣dTds

∣∣∣∣︸ ︷︷ ︸
κ

and hence,

κ =

∣∣∣∣dTdt
∣∣∣∣∣∣∣∣dσdt
∣∣∣∣ ,

i.e.,

κ(t) =
|T ′(t)|
|σ′(t)|

, ′ =
d

dt
. (2.3)

EXERCISE 2.6. Use the above formula to compute the curvature of the
helix σ(t) = (r cos t, r sin t, ht).

Frenet Equations

Let s→ σ(s), s ∈ (a, b) be a regular unit speed curve such that κ(s) 6= 0
for all s ∈ (a, b). (We will refer to such a curve as strongly regular). Along σ
we are going to introduce the vector fields,

T = T (s) - unit tangent vector field
N = N(s) - principal normal vector field
B = B(s) - binormal vector field

{T,N,B} is called a Frenet frame. At each point of σ {T,N,B} forms an
orthonormal basis, i.e. T,N,B are mutually perpendicular unit vectors (see
figure next page).
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To begin the construction of the Frenet frame, we have the unit tangent
vector field,

T (s) = σ′(s), ′ =
d

ds

Consider the derivative T ′ = T ′(s).

Claim. T ′⊥T along σ.

Proof. It suffices to show 〈T ′, T 〉 = 0 for all s ∈ (a, b). Along σ,

〈T, T 〉 = |T |2 = 1.

Differentiating both sides,

d

ds
〈T, T 〉 =

d

ds
1 = 0

〈dT
ds
, T 〉+ 〈T, dT

ds
〉 = 0

2〈dT
ds
, T 〉 = 0

〈T ′, T 〉 = 0.

Definition. Let s → σ(s) be a strongly regular unit speed curve. The
principal normal vector field along σ is defined by

N(s) =
T ′(s)

|T ′(s)|
=
T ′(s)

κ(s)
(κ(s) 6= 0) (2.4)

The binormal vector field along σ is defined by

B(s) = T (s)×N(s). (2.5)
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Note, the definition of N = N(s) implies the equation

T ′ = κN . (2.6)

Claim. For each s, {T (s), N(s), B(s)} is an orthonormal basis for vectors
in space based at σ(s).

Mutually perpendicular:

〈T,N〉 = 〈T, T
′

κ
〉 =

1

κ
〈T, T ′〉 = 0.

B = T ×N ⇒ 〈B, T 〉 = 〈B,N〉 = 0.

Unit length: |T | = 1, and

|N | =

∣∣∣∣ T ′|T ′|
∣∣∣∣ =
|T ′|
|T ′|

= 1,

|B|2 = |T ×N |2

= |T |2|N |2 − 〈T,N〉2 = 1.

Remark on orthonormal bases.

Let X be a vector at the point σ(s):

Then X can be expressed as a linear combination

X = aT + bN + cB

The constants a, b, c are determined as follows,

〈X,T 〉 = 〈aT + bN + cB, T 〉
= a〈T, T 〉+ b〈N, T 〉+ c〈B, T 〉
= a .
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Hence, a = 〈X,T 〉, and similarly, b = 〈X,N〉, c = 〈X,B〉. Hence X can
be expressed as,

X = 〈X,T 〉T + 〈X,N〉N + 〈X,B〉B. (2.7)

Torsion: Torsion is a measure of “twisting”. Curvature is associated with
T ′; torsion is associated with B′:

B = T ×N
B′ = T ′ ×N + T ×N ′

= κN ×N + T ×N ′

Therefore B′ = T ×N ′ which implies B′⊥T , i.e.

〈B′, T 〉 = 0

Also, since B = B(s) is a unit vector along σ, 〈B,B〉 = 1, differentiation and
the metric product rule imply

〈B′, B〉 = 0

It follows that B′ is a multiple of N ,

B′ = 〈B′, T 〉T + 〈B′, N〉N + 〈B′, B〉B
= 〈B′, N〉N.

Hence, we may write,

B′ = −τN , (2.8)

where,

τ = torsion = −〈B′, N〉 . (2.9)

Remarks.

1. τ is a function of s, τ = τ(s).

2. τ is signed i.e. can be positive or negative.

3. |τ(s)| = |B′(s)|, i.e., τ = ±|B′|, and hence τ measuures how B wiggles.

Given a strongly regular unit speed curve σ, the collection of quantities
T,N,B, κ, τ is sometimes referred to as the Frenet apparatus.
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Example. Compute T,N,B, κ, τ for the unit speed circle.

σ(s) =
(
r cos

(s
r

)
, r sin

(s
r

)
, 0
)

T = σ′ =
(
− sin

(s
r

)
, cos

(s
r

)
, 0
)

T ′ = −1

r

(
cos
(s
r

)
, sin

(s
r

)
, 0
)

κ = |T ′| = 1

r

N =
T ′

k
= −

(
cos
(s
r

)
, sin

(s
r

)
, 0
)

B = T ×N

=

∣∣∣∣∣∣
i j k
−s c 0
−c −s 0

∣∣∣∣∣∣
= k = (0, 0, 1) ,

(where c = cos
(s
r

)
and s = sin

(s
r

)
). Finally, since B′ = 0, τ = 0, i.e. the

torsion vanishes.

Conjecture. Let s → σ(s) be a strongly regular unit speed curve. Then,
σ is a plane curve iff its torsion vanishes, τ ≡ 0.

Example. Compute T,N,B, κ, τ for the unit speed helix.

By Exercise 2.3,

σ(s) = (r cosωs, r sinωs, hωs) .

where ω =
1√

r2 + h2
.
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T = σ′ = (−rω sinωs, rω cosωs, hω)

T ′ = −ω2r(cosωs, sinωs, 0)

κ = |T ′| = ω2r =
r

r2 + h2
= const.

N =
T ′

κ
= (− cosωs,− sinωs, 0)

B = T ×N =

∣∣∣∣∣∣
i j k

−rω sinωs rω cosωs hω
− cosωs −sinωs 0

∣∣∣∣∣∣
B = (hω sinωs,−hω cosωs, rω)

B′ = (hω2 cosωs, hω2 sinωs, 0)

= hω2(cosωs, sinωs, 0)

B′ = −hω2N

B′ = −τN ⇒ τ = hw2 =
h

r2 + h2
.

The osculating plane:

Π(s) = osculating plane of σ at σ′(s)

= plane passing through σ(s) spanned by T (s) and N(s)

(or equivalently, perpendicular to B(s))

See figure next page.
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Comments.

(1) s→ Π(s) is the family of osculating planes along σ. The Frenet equation
B′ = −τN shows that the torsion τ measures how the osculating plane is
twisting along σ.

(2) Π(s0) passes through σ(s0) and is spanned by σ′(s0) and σ′′(s0). Hence,
in a sense that can be made precise, s→ σ(s) lies in Π(s0) “to second order
in s”. If τ(s0) 6= 0 then σ′′′(s0) is not tangent to Π(s0). Hence the torsion τ
gives a measure of the extent to which σ twists out of a given fixed osculating
plane (see e.g. [3, p. 60f]).

Theorem 2.3. (Frenet Formulas) Let s → σ(s) be a strongly regular unit
speed curve. Then the Frenet frame, T,N,B satisfies,

T ′ = κN
N ′ = −κT + τB
B′ = −τN

Proof. We have already established the first and third formulas (see equations
(2.6) and (2.8)). To establish the second, observe B = T ×N ⇒ N = B×T .
Hence,

N ′ = (B × T )′ = B′ × T +B × T ′
= −τN × T + κB ×N
= −τ(−B) + κ(−T )
= −κT + τB.

We can express the Frenet formulas as a matrix equation,
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 T
N
B

′ =
 0 κ 0
−κ 0 τ

0 −τ 0


︸ ︷︷ ︸

A

 T
N
B


Note that A is skew symmetric: At = −A. A = [aij], then aji = −aij.

The Frenet equations can be used to derive various properties of space
curves.

Proposition 2.4. Let s → σ(s), s ∈ (a, b), be a strongly regular unit speed
curve. Then, σ is a plane curve iff its torsion vanishes, τ ≡ 0.

Proof. Recall, the plane Π which passes through the point x0 ∈ R3 and is
perpendicular to the unit vector n consists of all points x ∈ R3 which satisfy
the equation,

〈n, x− x0〉 = 0 .

⇒: Assume s→ σ(s) lies in the plane Π. Then, for all s,

〈n, σ(s)− x0〉 = 0

Since n is constant, differentiating twice gives,

d

ds
〈n, σ(s)− x0〉 = 〈n, σ′〉 = 〈n, T 〉 = 0 ,

d

ds
〈n, T 〉 = 〈n, T ′〉 = κ〈n,N〉 = 0 ,

Since n is a unit vector perpendicular to T and N , n = ±B, so B = ±n.
I.e., B = B(s) is constant which implies B′ = 0. Therefore τ ≡ 0.
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⇐: Now assume τ ≡ 0. B′ = −τN ⇒ B′ = 0, i.e. B(s) is constant,

B(s) = B = constant vector.

We show s → σ(s) lies in the plane, 〈B, x − σ(s0)〉 = 0, passing through
σ(s0), s0 ∈ (a, b), and perpendicular to B, i.e., will show,

〈B, σ(s)− σ(s0)〉 = 0 . (∗)

for all s ∈ (a, b). Consider the function, f(s) = 〈B, σ(s)− σ(s0)〉. Differenti-
ating,

f ′(s) =
d

ds
〈B, σ(s)− σ(s0)〉

= 〈B′, σ(s)− σ(s0)〉+ 〈B, σ′(s)〉

= 0 + 〈B, T 〉 = 0 .

Hence, f(s) = c = const. Since f(s0) = 〈B, σ(s0) − σ(s0)〉 = 0., c = 0
and thus f(s) ≡ 0. Therefore (∗) holds, i.e., s → σ(s) lies in the plane
〈B, x− σ(s0)〉 = 0.

Sphere Curves. A sphere curve is a curve in R3 which lies on a sphere,

|x− x0|2 = r2 , (sphere of radius r centered at x0)

〈x− x0, x− x0〉 = r2

Thus, s→ σ(s) is a sphere curve iff there exists x0 ∈ R3, r > 0 such that

〈σ(s)− x0, σ(s)− x0〉 = r2 , for all s. (∗)

If s→ σ(s) lies on a sphere of radius r, it is reasonable to conjecture that

σ has curvature κ ≥ 1

r
(why?). We prove this.
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Proposition 2.5. Let s → σ(s), s ∈ (a, b), be a unit speed curve which
lies on a sphere of radius r. Then its curvature function κ = κ(s) satisfies,

κ ≥ 1

r
.

Proof. Differentiating (∗) gives,

2〈σ′, σ − x0〉 = 0

i.e.,
〈T, σ − x0〉 = 0.

Differentiating again gives:

〈T ′, σ − x0〉+ 〈T, σ′〉 = 0

〈T ′, σ − x0〉+ 〈T, T 〉 = 0

〈T ′, σ − x0〉 = −1 (⇒ T ′ 6= 0)

κ〈N, σ − x0〉 = −1

But,
|〈N, σ − x0〉| = |N ||σ − x0|| cos θ|

= r| cos θ|,
and so,

κ = |κ| = 1

|〈N, σ − x0〉|
=

1

r| cos θ|
≥ 1

r

.

EXERCISE 2.7. Prove that any unit speed sphere curve s→ σ(s) having
constant curvature is a circle (or part of a circle). (Suggestion: Show that
the torsion vanishes (why is this sufficient?). To show this differentiate (∗) a
few times.)

Lancrets Theorem.

Consider the unit speed circular helix σ(s) = (r cosωs, r sinωs, hωs), ω =
1/
√
r2 + h2. This curve makes a constant angle wrt the z-axis: We have,

T = 〈−rω sinωs, r cosωs, hω〉, and hence,

cos θ =
〈T,k〉
|T ||k|

= hω = const.
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Definition. A unit speed curve s → σ(s) is called a generalized helix if its
unit tangent T makes a constant angle with a fixed unit direction vector u
(⇔ 〈T,u〉 = cos θ = const).

Theorem 2.6. (Lancret) Let s → σ(s), s ∈ (a, b) be a strongly regular unit
speed curve such that τ(s) 6= 0 for all s ∈ (a, b). Then σ is a generalized helix
iff κ/τ =constant.

For a proof, see [2, p. 32].

Non-unit Speed Curves.

Given a strongly regular curve t → σ(t) (hence, κ 6= 0) it can be repa-
rameterized in terms of arc length s→ σ̃(s), σ̃(s) = σ(t(s)). The quantities
T,N,B, κ, T can then be computed. But it is convenient to have formulas
for these quantities which do not involve reparameterizing in terms of arc
length.

Proposition 2.7. Let t→ σ(t) be a strongly regular curve in R3. Then

(a) T =
σ̇

|σ̇|
, · = d

dt

(b) B =
σ̇ × σ̈
|σ̇ × σ̈|

(c) N = B × T

(d) κ =
|σ̇ × σ̈|
|σ̇|3

(e) τ =
〈σ̇ × σ̈, ...σ〉
|σ̇ × σ̈|2

Proof. We derive some of these. See e.g. [2, Section 2-6] for further details.
Interpreting physically, we have t=time, σ̇=velocity, σ̈=acceleration.

The unit tangent may be expressed as,

T =
σ̇

|σ̇|
=
σ̇

v

where v = |σ̇| = speed.
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Hence,

σ̇ = vT

σ̈ =
d

dt
vT =

dv

dt
T + v

dT

dt

=
dv

dt
T + v

dT

ds
· ds
dt

=
dv

dt
T + v(κN)v

σ̈ = v̇T + v2κN

Side Comment: This is the well-known expression for acceleration in terms
of its tangential and normal components.

v̇ = tangential component of acceleration (v̇ = s̈)

v2κ = normal component of acceleration

= centripetal acceleration (for a circle, v2κ =
v2

r
).

σ̇, σ̈ lie in the osculating plane; if τ 6= 0,
...
σ does not.

Continuing the derivation,

σ̇ × σ̈ = vT × (v̇T + v2κN)
= vv̇T × T + v3κT ×N

σ̇ × σ̈ = v3κB
|σ̇ × σ̈| = v3κ|B| = v3κ

Hence,

κ =
|σ̇ × σ̈|
v3

=
|σ̇ × σ̈|
|σ̇|3



CHAPTER 2. PARAMETERIZED CURVES IN R3 35

Also,

B = const · σ̇ × σ̈ =
σ̇ × σ̈
|σ̇ × σ̈|

.

EXERCISE 2.8. Derive the expression for τ . Hint: Compute
...
σ and use

Frenet formulas.

EXERCISE 2.9. Suppose σ is a regular curve in the x-y plane, σ(t) =
(x(t), y(t), 0), i.e.,

σ :
x = x(t)
y = y(t)

(a) Show that the curvature of σ is given by,

κ =
|ẋÿ − ẏẍ|
[ẋ2 + ẏ2]3/2

(b) Use this formula to compute the curvature κ = κ(t) of the ellipse,

x2

a2
+
y2

b2
= 1 .

The Fundamental Theorem of Space Curves

This theorem says basically that any strongly regular unit speed curve
is completely determined by its curvature and torsion (up to a Euclidean
motion).

Theorem 2.8. Let κ = κ(s) and τ = τ(s) be smooth functions on an interval
(a, b) such that κ(s) > 0 for all s ∈ (a, b). Then there exists a strongly regular
unit speed curve s → σ(s), s ∈ (a, b) whose curvature and torsion functions
are κ and τ , respectively. Moreover, σ is essentially unique, i.e. any other
such curve σ̃ can be obtained from σ by a Euclidean motion (translation
and/or rotation).

Remarks.
1. The FTSC shows that curvature and torsion are the essential quantities

for describing space curves.
2. The FTSC also illustrates a very important issue in differential ge-

ometry. The problem of establishing the existence of some geometric object
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having certain geometric properties often reduces to a problem concerning
the existence of a solution to some differential equation, or system of differ-
ential equations.

Proof. Fix s0 ∈ (a, b), and in space fix P0 = (x0, y0, z0) ∈ R3 and a positively
oriented orthonormal frame of vectors at P0, {T0, N0, B0}.

We show that there exists a unique unit speed curve σ : (a, b) → R3

having curvature κ and torsion τ such that σ(s0) = P0 and σ has Frenet
frame {T0, N0, B0} at σ(s0).

The proof is based on the Frenet formulas:

T ′ = κN

N ′ = −κT + τB

B′ = −τN

or, in matrix form,

d

ds

 T
N
B

 =

 0 κ 0
−κ 0 τ

0 −τ 0

 T
N
B

 .
The idea is to mimmick these equations using the given functions κ, τ .

Consider the following system of O.D.E.’s in the (as yet unknown) vector-
valued functions e1 = e1(s), e2 = e2(s), e3 = e3(s),

de1

ds
= κe2

de2

ds
= −κe1 + τe3

de3

ds
= −τe2


(∗)

We express this system of ODE’s in a notation convenient for the proof:

d

ds

 e1

e2

e3

 =

 0 κ 0
−κ 0 τ

0 −τ 0


︸ ︷︷ ︸

Ω

 e1

e2

e3

 ,
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Set,

Ω =

 0 κ 0
−κ 0 τ

0 −τ 0

 =
[
Ωi

j
]
,

i.e. Ω1
1 = 0, Ω1

2 = κ, Ω1
3 = 0, etc. Note that Ω is skew symmetric,

Ωt = −Ω ⇐⇒ Ωj
i = −Ωi

j, 1 ≤ i, j ≤ 3. Thus we may write,

d

ds

 e1

e2

e3

 =
[
Ωi

j
]  e1

e2

e3

 ,

or,

d

ds
ei =

3∑
j=1

Ωi
jej , 1 ≤ i ≤ 3 . (2.10)

Consider the sytem of ODE’s (2.10) subject to the initial conditions,

IC :
e1(s0) = T0

e2(s0) = N0

e3(s0) = B0

Basic existence and unique result for systems of linear ODE’s guarantees
that this system has a unique solution:

s→ e1(s), s→ e2(s), s→ e3(s), s ∈ (a, b) .

We show that e1 = T , e2 = N , e3 = B, κ = κ and τ = τ for some unit speed
curve s→ σ(s).

Claim. {e1(s), e2(s), e3(s)} is an orthonormal frame for all s ∈ (a, b), i.e.,

〈ei(s), ej(s)〉 = δij ∀ s ∈ (a, b)

where δij is the “Kronecker delta” symbol:

δij =

{
0 i 6= j
1 i = j .

(2.11)
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Proof of the claim. We make use of the “Einstein summation convention”:

d

ds
ei =

3∑
j=1

Ωi
jej = Ωi

jej

Let gij = 〈ei, ej〉, gij = gij(s), 1 ≤ i, j ≤ 3. Note,

gij(s0) = 〈ei(s0), ej(s0)〉
= δij

The gij’s satisfy a system of linear ODE’s,

d

ds
gij =

d

ds
〈ei, ej〉

= 〈e′i, ej〉+ 〈ei, e′j〉

= 〈Ωi
kek, ej〉+ 〈ei,Ωj

`e`〉

= Ωi
k〈ek, ej〉+ Ωj

`〈ei, e`〉
Hence,

d

ds
gij = Ωi

kgkj + Ωj
`gi`

IC : gij(s0) = δij

Observe, gij = δij is a solution to this system,

LHS =
d

ds
δij =

d

ds
const = 0.

RHS = Ωi
kδkj + Ωj

`δi`

= Ωi
j + Ωj

i

= 0 (skew symmetry!).

But ODE theory guarantees a unique solution to this system. Therefore
gij = δij is the solution, and hence the claim follows.
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How to define σ: Well, if s→ σ(s) is a unit speed curve then

σ′(s) = T (s) ⇒ σ(s) = σ(s0) +

∫ s

s0

T (s)ds.

Hence, we define s→ σ(s), s ∈ (a, b) by,

σ(s) = P0 +

∫ s

s0

e1(s)ds

Claim. σ is unit speed, κ = κ, τ = τ , T = e1, N = e2, B = e3.

Proof of the claim. We have,

σ′ =
d

ds
(P0 +

∫ s

s0

e1(s)ds) = e1 ,

hence, |σ′| = |e1| = 1, so σ is unit speed. Then we have,

T = σ′ = e1

κ = |T ′| = |e′1| = |κe2| = κ

N =
T ′

κ
=
e′1
κ

=
κe2

κ
= e2

B = T ×N = e1 × e2 = e3

B′ = e′3 = −τe2 = −τN ⇒

τ = τ .
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Additional Chapter 2 Exercises

1. Show that σ(t) = (et cos t, et sin t, et) is a regular curve by computing
its speed. Then reparameterize σ in terms of arc length.

2. Show that

σ(s) =

(
(1 + s)3/2

3
,
(1− s)3/2

3
,
s√
2

)
is a unit speed curve, and compute its curvature.

3. (Continuation of Exercise 2.5.) If σ : [0, `]→ R3, s→ σ(s), is a convex

curve, then φ = φ(s) is necessarily increasing. Hence
∫ `

0
κ(s)ds =

4φ = φ(`)− φ(0). If σ is a simple closed convex curve, conclude that∫ `
0
κ(s)ds = 2π.

4. Use Proposition 2.7, p. 33, to compute κ, τ, T,N,B for σ(t) = (cosh t, sinh t, t).
(This curve is sometimes referred to as the hyperbolic helix.) Partial
answer: κ = τ = 1

2
sech2t (where sech t = 1

cosh t
).

5. Let t→ σ(t) be a regular curve in R3. Suppose there is a point p in R3

such that σ(t) − p is perpendicular to σ′(t) for all t. Show that σ lies
on sphere centered at p.

6. Prescribed curvature in the plane.

(a) To construct a unit speed curve in the x-y with curvature κ = κ(s)
(κ ≥ 0), let θ = θ(s) be defined by, θ(s) =

∫ s
0
κ(u) du. Then show

that

σ(s) = (

∫ s

0

cos θ(u) du,

∫ s

0

sin θ(u) du, 0)

is a unit speed curve with curvature κ = κ(s).

(b) Use part (a) to construct a curve in the x-y plane with curvature
κ(s) = 1

1+s2
. (Ans.: σ(s) = (sinh−1(s),

√
1 + s2, 0).)

7. (Central force field.) Consider the path of a particle t→ σ(t) in space.
Show that if the acceleration vector is always proportional to the posi-
tion vector, σ′′(t) = f(t)σ(t) then the motion is in a plane. (Hint: Use
Proposition 2.7(e).)
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8. The rotation of a rigid body moving along a unit speed curve s→ σ(s)
is described by the angular velocity vector ω = ω(s) determined by the
equations, T ′ = ω × T , N ′ = ω × N , and B′ = ω × B. Show that
ω, in terms of T , N , and B, is given by ω = τT + κB. (Hint: write
ω = aT + bN + cB, and take cross products with T , N , and B to
determine a, b , and c.) ω is known as the Darboux vector.

9. Let σ : [0, L] → R3 be a unit speed closed curve, i.e. σ(0) = σ(L).
Show that if σ is contained in the ball of radius R centered at the
origin then the integral of the curvature κ of σ satisfies,

∫ L
0
κds ≥ L

R
.

(Hint differentiate f(s) = −〈σ′(s), σ(s)〉 and then integrate.)



Chapter 3

Surfaces

We all understand intuitively what a surface is. In calculus we encounter
surfaces in several ways.

1. As graphs of functions of two variables, z = f(x, y).

Ex. z = x2 + y2

2. As level surfaces of functions of three variables, F (x, y, z) = c.

Ex. x2 + y2 + z2 = 1

3. As surfaces of revolution.

Ex. Torus: surface of a doughnut.

We shall be fairly precise about what we mean by a surface. Our def-
inition will need to cover all these cases. The key is to describe surfaces
parametrically. Very roughly speaking, a surface for us is going to be a sub-
set of R3 which can be broken up into overlapping pieces such that each piece
is described parametrically, i.e. described by a 2-parameter map.

42
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Hence, the starting point is the notion of parameterized surfaces.

Definition. A smooth parameterized surface in R3 is a smooth map x : U ⊂
R2 → R3, (u, v)→ x(u, v).

As (u, v) varies over U , x(u, v) ∈ R3 traces out a “surface” in R3.

In terms of components, x(u, v) = (x(u, v), y(u, v), z(u, v)) ,

x :
x = x(u, v)
y = y(u, v) (u, v) ∈ U
z = z(u, v)

An effective way to see what gets traced out is to look at the “u-curves”
and “v-curves”.

(1) if v is held constant, v = v0 and u varies,

u→ x(u, v0) “u− curve′′

(2) if u is held constant, u = u0 and v varies,

v → x(u0, v) “v − curve′′
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One way to examine a parameterized surface is to plot many “coordinate”
curves, u=const, v=const. This is how e.g., Mathematica plots parameter-
ized surfaces.

Example. x : U → R3, U = {(u, v) : 0 < u < 2π, 0 < v < 3}, x(u, v) =
(2 cosu, 2 sinu, v),

x :
x = 2 cosu
y = 2 sinu 0 < u < 2π, 0 < v < 3
z = v

For this example it is convenient to consider closed rectangle U : 0 ≤ u ≤ 2π,
0 ≤ v ≤ 3. We plot some u-curves and v-curves:

v = 0 :
x = 2 cosu
y = 2 sinu 0 ≤ u ≤ 2π circle in z = 0
z = 0

v = 1 :
x = 2 cosu
y = 2 sinu 0 ≤ u ≤ 2π circle in z = 1
z = 1

etc.

u = 0 :
x = 2 vertical line
y = 0 0 ≤ v ≤ 3
z = v

u = π/2 :
x = 0 vertical line
y = 2 0 ≤ v ≤ 3
z = v

etc.

x

2⇡

3
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This parameterized surface describes a cylinder. Note that the coordinate
functions satisfy:

x2 + y2 = 4, 0 ≤ z ≤ 3 .

Note: On the original domain U , x is 1-1. We will restrict attention to
parameterized surfaces x : U ⊂ R2 → R3 which are 1-1. Cylinder of radius
a : x(u, v) = (a cosu, a sinu, v)

Coordinate Vector Fields. Given a smooth surface,

x(u, v) = (x(u, v), y(u, v), z(u, v)),

we can differentiate wrt u and v,

∂x

∂u
=

(
∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
∂x

∂v
=

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
.

These partial derivatives have natural interpretations,

∂x

∂u
(u0, v0) = tangent vector to u-curve

u→ x(u, v0) at x(u0, v0)

∂x

∂v
(u0, v0) = tangent vector to v-curve

v → x(u0, v) at x(u0, v0)
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Hence,

∂x

∂u
= velocity vector field to u-curves

∂x

∂v
= velocity vector field to v-curves.

Remark. The coordinate curves u = u0, v = v0 lie in the surface. Hence the

coordinate vectors
∂x

∂u
(u0, v0),

∂x

∂v
(u0, v0) are tangent vectors to the surface

at x(u0, v0).

Standard Picture: Grid of horizontal and vertical lines in U ⊂ R2 gives rise to
a grid of curves - the coordinate curves on x(U). This amounts to introducing
coordinates on x(U).

Shorthand Notation: xu =
∂x

∂u
, xv =

∂x

∂v
.

Actually, to insure that the image of a parameterized surface x looks like
a surface (i.e. smooth 2-dimensional object), we need a regularity condition,
akin to the regularity condition for parameterized curves (σ′(t) 6= 0).

Example. x : R2 → R3, x(u, v) = (0, 0, 0) ∀(u, v). Image a single point!

Note that
∂x

∂u
=
∂x

∂v
= 0.

Example. x : R2 → R3, x(u, v) = (cos(u+ v2), sin(u+ v2), 1)

x :
x = cos(u+ v2)
y = sin(u+ v2)
z = 1

Image: x2 + y2 = 1, z = 1, a circle!

Compute:
∂x

∂v
= −2v

∂x

∂u
, i.e.

∂x

∂u
,
∂x

∂v
are linearly dependent (at every

point).

To avoid this type of “degeneracy” we need to require that
∂x

∂u
,
∂x

∂v
be lin-

early independent. There are several ways to characterize this independence.
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Consider a parameterized surface, x : U ⊂ R2 → R3, x(u, v) = (x(u, v), y(u, v), z(u, v)),

x :
x = x(u, v)
y = y(u, v)
z = z(u, v)

Dx = Jacobian matrix of x, is the 3× 2 matrix:

Dx =



∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∂z

∂u

∂z

∂v


Recall,

the rank of a matrix = no. of linearly independent rows
= no. of linearly independent columns

Proposition 3.1. Let x : U ⊂ R2 → R3 be a smooth parameterized surface.
Then the following conditions are equivalent.

(1) Dx has rank 2.

(2)
∂x

∂u
,
∂x

∂v
are linearly independent.

(3)
∂x

∂u
× ∂x

∂v
6= 0.

Proof:

Dx has rank 2 ⇐⇒ columns lin. indep.

⇐⇒ ∂x

∂u
,
∂x

∂v
lin. indep.

⇐⇒ one is not a multiple of the other

⇐⇒ ∂x

∂u
× ∂x

∂v
6= 0.
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Definition. We introduce the following terminology.

1. A regular (parameterized) surface in R3 is a smooth parameterized sur-

face x : U ⊂ R2 → R3 such that
∂x

∂u
× ∂x

∂v
6= 0 for all (u, v) ∈ U .

2. A coordinate patch is a regular surface x : U ⊂ R2 → R3 which is
one-to-one.

Remark. Essentially (i.e., apart from an additonal technical condition dis-
cussed later), a surface in R3 is a subset of R3 which is covered by coordinate
patches.

If the regularity condition is not satisfied, the image of x can degenerate
to a point, or curve – or something that does not look like a smooth surface
(surface with “folds” or “cusps”). If, however, the regularity condition is
satisfied, then the image of x will look like a smooth surface. This is made
precise in the following proposition.

Proposition 3.2. Let x : U ⊂ R2 → R3 be a regular surface. Then for each
(u0, v0) ∈ U there is a neighborhood V ⊂ U of (u0, v0) such that the image
x(V ) ⊂ R3 coincides with the graph of an equation of the form,

z = f(x, y) or y = g(x, z) or x = h(y, z) ,

where f, g, h are smooth functions of two variables.

Proof. The proof is a nice application of the Inverse Function Theorem. We
have x : U ⊂ R2 → R3, x(u, v) = (x(u, v), y(u, v), z(u, v)), and

∂x

∂u
=

(
∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
,

∂x

∂v
=

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
.

Then,

∂x

∂u
× ∂x

∂v
=

∣∣∣∣∣∣
i j k
xu yu zu
xv yv zv

∣∣∣∣∣∣
=

∣∣∣∣ yu zu
yv zv

∣∣∣∣ i− ∣∣∣∣ xu zu
xv zv

∣∣∣∣ j +

∣∣∣∣ xu yu
xv yv

∣∣∣∣k .
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Since, by regularity,
∂x

∂u
× ∂x

∂v
6= 0 at (u0, v0), one of the components must

be nonzero, say, ∣∣∣∣∣∣∣∣∣
∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

∣∣∣∣∣∣∣∣∣ 6= 0 at (u0, v0) .

Now, consider the map Φ : U ⊂ R2 → R2 defined by, Φ(u, v) = (x(u, v), y(u, v)),

Φ :
x = x(u, v)
y = y(u, v)

Φ has Jacobian matrix,

DΦ =


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

 .

Hence detDΦ 6= 0 at (u0, v0), i.e. DΦ is nonsingular at (u0, v0). By the
IFT there exists a neighborhood V of (u0, v0) such that W = Φ(V ) is open
in R2 and Φ−1 : W ⊂ R2 → V ⊂ R2 is smooth. In terms of components,
Φ−1(x, y) = (u(x, y), v(x, y)),

Φ−1 :
u = u(x, y)
v = v(x, y)

, (x, y) ∈ W

Now, let f = z ◦ Φ−1, f : W ⊂ R2 → R,

f(x, y) = z(Φ−1(x, y)) = z(u(x, y), v(x, y)).

The graph of f is the set of points in R3,

graph f = {(x, y, z) ∈ R3 : z = f(x, y), (x, y) ∈ W}

We now observe that x(V ) = graphf (see figure next page): f = z ◦ Φ−1 ⇒
z = f ◦ Φ, hence z(u, v) = f(Φ(u, v)) = f(x(u, v), y(u, v)). Thus,

x(u, v) = (x(u, v), y(u, v), z(u, v))
= (x(u, v), y(u, v), f(x(u, y), y(u, v)) ∈ graph f.
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Some Parameterized Surfaces

1. Graphs of functions of two variables, z = f(x, y), f : U ⊂ R2 → R
smooth function,

graph f = {(x, y, z) ∈ R3 : z = f(x, y), (x, y) ∈ U}.

For example: For f(x, y) = x2 + y2, graph f is the set of all points (x, y, z)
such that z = x2 + y2.

There is a standard way to parameterize such graphs: x : U ⊂ R2 → R3,
x(u, v) = (u, v, f(u, v)),

x :
x = u
y = v (u, v) ∈ U .
z = f(u, v)

x is a regular surface (in fact, a coordinate patch). One needs to checl the
regularity condition:

∂x

∂u
=

(
1, 0,

∂f

∂u

)
,

∂x

∂v
=

(
0, 1,

∂f

∂v

)
∂x

∂u
× ∂x

∂v
=

(
−∂f
∂u
,−∂f

∂v
, 1

)
6= 0 .

x is called the Monge patch associated to f .
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Example. f : U ⊂ R2 → R, f(x, y) =
√

1− x2 − y2, U = {(x, y) :

x2 +y2 < 1}, graph f : z =
√

1− x2 − y2, a hemisphere. Associated Monge
patch:

x :
x = u
y = v

z =
√

1− u2 − v2

,

i.e., x(u, v) = (u, v,
√

1− u2 − v2), x : U ⊂ R2 → R3.

2. Geographical Coordinates on a sphere of radius R.

S2
R = {(x, y, z) ∈ R3 : x2 + y2 + z2 = R2}

θ = colatitude, 0 ≤ θ ≤ π

φ = longitude, 0 ≤ φ ≤ π .

By spherical coordinates,

x = R sin θ cosφ

y = R sin θ sinφ

z = R cos θ .

Let U = {(θ, φ) : 0 < θ < π, 0 < φ < 2π}. Define x : U ⊂ R2 → R3 by,

x(θ, φ) = (R sin θ cosφ, R sin θ sinφ, R cos θ) .

x is clearly a smooth parameterized surface.

Coordinate curves:

θ-curves: φ = const – longitudes (meridians)

φ-curves: θ = const – circles of latitude
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Coordinate vector fields:

∂x

∂θ
= (R cos θ cosφ, R cos θ sinφ,−R sin θ)

∂x

∂φ
= (−R sin θ sinφ, R sin θ cosφ, 0) .

E.g., at (θ, φ) = (π/2, π/2),

∂x

∂θ
= (0, 0,−R),

∂x

∂φ
= (−R, 0, 0)

EXERCISE 3.1. Show by computation that

∣∣∣∣∂x

∂θ
× ∂x

∂φ

∣∣∣∣ = R2 sin θ > 0,

0 < θ < π.

Hence, x is regular surface (in fact, a coordinate patch).

3. Surfaces of revolution.

Consider a regular curve σ in the x-z plane, σ(t) = (r(t), 0, z(t)), i.e,

σ :
x = r(t)
y = 0 a < t < b .
z = z(t)

(Assume σ does not meet the z-axis.) Now rotate σ about the z-axis to
generate a surface of revolution:
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Parameterize as follows: Let U = {(t, θ) : a < t < b.−π < θ < π}. Define
x : U ⊂ R2 → R3 by,

x(t, θ) = (r(t) cos θ, r(t) sin θ, z(t)).

This gives a parametric description of the surface of revolution; t measures
position along σ and θ measure how far σ has been rotated.

t-curves: θ=const, longitudes (meridians)
θ-curves: t = const, circles of latitude (parallels).

EXERCISE 3.2. Show that x as defined above is a regular surface (in fact
a coordinate patch provided σ is 1-1).

EXERCISE 3.3. Rotate the circle pictured below about the z-axis to obtain
a torus.

Show that the torus is parameterized by the following map: U = (0, 2π) ×
(−π, π),
x : U ⊂ R2 → R3,

x(t, θ) = ((R + r cos t) cos θ, (R + r cos t) sin θ, r sin t).

Hint: Parameterize the circle appropriately.
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Reparameterizations.

Definition. Let x : U ⊂ R2 → R3 be a regular surface. Let f : V ⊂ R2 →
U ⊂ R2 be a diffeomorphism. Then y = x ◦ f : V ⊂ R2 → R3 is called a
reparameterization.

Proposition 3.3. Given a regular surface x : U ⊂ R2 → R3 and a diffeo-
morphism f : V ⊂ R2 → U ⊂ R2, the map y = x ◦ f : V ⊂ R2 → R3 is a
regular surface.

Proof. y = x ◦ f is smooth. We need to show that y satisfies the regularity
condition. To do this we first show how the two sets of coordinate vectors{
∂x

∂ui

}
,

{
∂y

∂vi

}
are related. Some notation:

f : V ⊂ R2 → U ⊂ R2

f(v1, v2) = (u1, u2) = (f 1(v1, v2), f 2(v1, v2))

f :
u1 = f 1(v1, v2)
u2 = f 2(v1, v2)

Df =

[
∂ui

∂vk

]
2×2

Then,
y(v1, v2) = x ◦ f(v1, v2) = x(f(v1, v2))

= x (f 1(v1, v2)︸ ︷︷ ︸
u1

, f 2(v1, v2))︸ ︷︷ ︸
u2

i.e.

y = x(u1, u2) where f :
u1 = f 1(v1, v2)
u2 = f 2(v1, v2)

.
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Hence, by the chain rule,

∂y

∂vk
=

∂x

∂u1

∂u1

∂vk
+
∂x

∂u2

∂u2

∂vk
, k = 1, 2

=
2∑
j=1

∂x

∂uj
∂uj

∂vk

∂y

∂vk
=
∑
j

∂uj

∂vk
∂x

∂uj
, k = 1, 2.

EXERCISE 3.4. Show that,

∂y

∂v1
× ∂y

∂v2
= detDf · ∂x

∂u1
× ∂x

∂u2

=
∂(u1, u2)

∂(v1, v2)
· ∂x

∂u1
× ∂x

∂u2
(6= 0)

Hence, y is regular if x is.

Terminology: The reparameterization map f is called a coordinate transfor-
mation, and describes a change of coordinates on the surface.

Surfaces (at last!).

We now want to make the transition from the notion of a parameterized
surface to that of a surface. A (regular) surface in R3 is a subset of R3

which is covered by coordinate patches, subject to some additional conditions
described below. The sphere, for example,

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

will, by our definition, be a surface (as it should be!). It can be covered by
several coordinate patches – but not by a single coordinate patch.

Before giving the “official” definition of a regular surface, we need to make
a couple of comments.

1. Any subset M of R3 inherits a natural collection of ‘open sets’: We say
that W ⊂M is open in M provided W = U ∩M for some open set U in R3.
(See figure on next page.)
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2. Consider a coordinate patch, i.e. a 1-1 regular parameterized surface,
x : U ⊂ R2 → R3. Then, in particular,

x : U → x(U)

is a continuous, 1-1 and onto map. Hence we can consider the inverse,

x−1 : x(U)→ U .

We point out that it’s possible for the inverse to be not continuous:

The points p, q are close, as points in R3, but x−1(p),x−1(q) are not close.

Definition. A subset M ⊂ R3 is a (regular) surface provided each point of
M is contained in a coordinate patch x : U ⊂ R2 → R3 such that (i) x(U) is
open in M and (ii) x−1 : x(U)→ U is continuous.

We refer to coordinate patches with the additional properties in the defin-
tion as proper patches. Thus, M ⊂ R3 is a regular surface iff M can be covered
by proper patches.

Example. Consider the sphere,

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

In this example the sphere is covered by six proper patches: z+, z−, y+, y−, x+, x−,
each a parameterized hemisphere.



CHAPTER 3. SURFACES 57

z+: upper hemisphere: z =
√

1− x2 − y2, with domain D : x2 + y2 < 1.
Associated Monge patch: z+ : U → R3, U = {(u, v) ∈ R2 : u2 + v2 < 1},

z+ :
x = u
y = v

z =
√

1− u2 − v2,

i.e. z+(u, v) = (u, v,
√

1− u2 − v2).

Claim. z+ is a proper patch in S2.

(1) z+ is a coordinate patch (Monge patch)

(2) z+(U) is an open subset of S2:

z+(U) = {(x, y, z) ∈ S2 : z > 0}

= S2 ∩ {z > 0}︸ ︷︷ ︸
open in R3

.

(3) (z+)−1 : z+(U)→ U is continuous:
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(z+)−1(x, y, z) = (x, y) – projection onto the first two coordinates, which is
continuous.

z−: lower hemisphere: z = −
√

1− x2 − y2; associated Monge patch: z− :
U → R3, z−(u, v) = (u, v,−

√
1− u2 − v2).

Other hemispheres:

y+ = Monge patch associated with hemisphere S2 ∩ {y > 0} (y =
√

1− x2 − z2)
y− = −−−”−−− S2 ∩ {y < 0}
x+ = −−−”−−− S2 ∩ {x > 0}
x− = −−−”−−− S2 ∩ {x < 0}.

Proposition 3.4 (Smooth overlap property). Let M be a surface. Let x :
U → R3 and y : V → R3 be two proper patches in M which overlap, W :=
x(U) ∩ y(V) 6= ∅ Then,

y−1 ◦ x : x−1(W ) ⊂ R2 → y−1(W ) ⊂ R2

is a diffeomorphism (i.e., is smooth with smooth inverse).

Proof. Inverse function theorem! (See [1], p. 70, Propisition 1.)

Example. In sphere example consider the overlapping patches z+ : U ⊂
R2 → R3, z+(u, v) = (u, v,

√
1− u2 − v2) and y+ : U ⊂ R2 → R3,

y+(u, v) = (u,
√

1− u2 − v2, v). Observe, y+(U) = S2 ∩ {y > 0} and
z+(U) = S2 ∩ {z > 0}. Then,

W := y+(U) ∩ z+(U) = S2 ∩ {y > 0} ∩ {z > 0} 6= ∅ .
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Consider (z+)−1 ◦ y+ : (y+)−1(W ) → (z+)−1(W ). Note, (y+)−1(W ) =
half-disk = U ∩ {v > 0}. Now,

y+(u, v) = (u,
√

1− u2 − v2, v)

(z+)−1(x, y, z) = (x, y)

and hence

(z+)−1 ◦ y+(u, v) = (z+)−1(y+(u, v)) = (z+)−1(u,
√

1− u2 − v2, v)

= (u,
√

1− u2 − v2) ,

which is smooth on U ∩ {v > 0}.

The smooth overlap property is the key ingredient used to generalize
the notion of surfaces in R3 to differentiable manifolds. That this property
holds for surfaces is important. For example, it is used to show that certain
properties which are defined in terms of coordinate charts (proper charts),
don’t really depend on the specific coordinate charts chosen. We give an
illustration.

Consider a function f : M → R, where M is a surface. What does it
mean for f to be smooth?

Definition. f : M → R is smooth provided for each p ∈ M there exists a
proper patch x : U ⊂ R2 → R3 in M containing p (p ∈ x(U) ⊂M) such that
f ◦ x : U ⊂ R2 → R is smooth.
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We say that f̂ is f expressed in coordinates. Thus, f is smooth provided
there exists a collection of charts covering M such that each coordinate ex-
pression f̂ is smooth.

This definition of smoothness does not depend on the particular choice
of proper charts covering M .

EXERCISE 3.5. If x and y are any two overlapping proper patches in
M then on the overlap, f ◦ x is smooth iff f ◦ y. (Hint: Smooth overlap
property.)

The following proposition identifies a large and important class of sur-
faces.

Proposition 3.5 (The inverse image theorem). Let f : R3 → R be a smooth
function. Consider the level set

M = {(x, y, z) ∈ R3 : f(x, y, z) = 0}

If ∇f = (fx, fy, fz) 6= 0 at each point of M then M is a surface.

Example. The sphere.

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}
= {(x, y, z) ∈ R3 : f(x, y, z) = 0},

where f(x, y, z) = x2 + y2 + z2 − 1. Now,

∇f = (2x, 2y, 2z) ,

and so ∇f 6= 0 except at (x, y, z) = (0, 0, 0) 6∈ S2. Hence, ∇f 6= 0 at each
point of S2. Therefore S2 is a surface.

Example. Double Cone.

M = {(x, y, z) ∈ R3 : z2 = x2 + y2}

= {(x, y, z) ∈ R3 : f(x, y, z) = 0},
,

where f(x, y, z) = x2 + y2 − z2. Then,

∇f = (2x, 2y, 2z) 6= 0
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except at (0, 0, 0). But this time (0, 0, 0) ∈ M . So the proposition doesn’t
guarantee thatM is a surface, and in fact it is not. The origin is not contained
in a proper patch. In general, however, away from points where the gradient
vanishes we do get a surface.

Remarks

1. Df =

 fx
fy
fz

 ∼ (fx, fy, fz) = ∇f. I.e. the gradient of f essentially

corresponds to the Jacobian of f .

2. Because M = f−1(0). For this reason, the proposition is often referred to
as the inverse image theorem.

Sketch of proof. Uses the inverse function theorem (actually the implicit
function theorem, which is a consequence of the IFT; see [1], p. 59, Prop. 2
for complete details).

We want to showM is covered by proper patches. Choose p0 = (x0, y0, z0) ∈
M ; ∇f |po 6= 0. Suppose then that

∂f

∂z
(p0) 6= 0.

M : f(x, y, z) = 0 (∗)

By the IFT, near p0 = (x0, y0, z0), (∗) can be solved smoothly for z in
terms of x and y,

z = h(x, y) ,

i.e., there exists a nbd U of (x0, y0) and a smooth function h : U ⊂ R2 → R
such that (x, y, h(x, y)) satisfies (∗) for all (x, y) in U ,

f(x, y, h(x, y)) = 0 ∀(x, y) ∈ U .

Hence,
(x, y, h(x, y)) ∈M for all (x, y) ∈ U.
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Now consider the Monge patch associated to h, x : U → R3,

x(u, v) = (u, v, h(u, v)) .

Then x is a proper patch in M which contains p0.

Tangent Vectors to a Surface.

Definition. Let M be a surface, and p ∈M . X is a tangent vector to M at
p provided X is the velocity vector at p of some smooth curve σ which lies
in M , i.e. provided there exists a smooth curve σ : (−ε, ε) → M ⊂ R3 such
that σ(0) = p and σ′(0) = X.

This definition is independent of coordinate patches – it is a coordinate
free concept. But for computational purposes it’s convenient to introduce
coordinates.

Let x : U → M ⊂ R3 be a proper patch in M which contains p, p =
x(u0, v0).

Observe that
∂x

∂u
(u0, v0) and

∂x

∂v
(u0, v0) are tangent vectors to M at p =

x(u0, v0): according to the definition:

xu(u0, v0) = velocity vector to u→ x(u, v0) at x(u0, v0), and,

xv(u0, v0) = velocity vector to v → x(u0, v) at x(u0, v0) .
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Notation/Terminology.

TpR3 := tangent space of R3 at p
= set of all vectors in R3 based at p.

TpR3 is a 3-dimensional vector space. For M a surface, p ∈M ,

TpM := tangent space of M at p
= set of all tangent vectors to M at p.

In the following proposition we show that TpM is a 2-dimensional sub-
space of TpR3 spanned by xu(u0, v0) and xv(u0, v0).

Proposition 3.6. Let M be a surface, p ∈ M . Let x : U → M ⊂ R3

be a proper patch in M containing p, p = x(u0, v0). Then TpM is a 2-
dimensional vector space, in fact it is the 2-dimensional vector subspace of
TpR3 spanned by {xu(u0, v0),xv(u0, v0)},

TpM = span{xu(u0, v0),xv(u0, v0)}
= {Axu(u0, v0) +Bxv(u0, v0) : A,B ∈ R}

Proof:

TpM ⊂ span{xu(u0, v0),xv(u0, v0)}: Let X ∈ TpM . Then there exists a

smooth curve σ : (−ε, ε) → M ⊂ R3 such that σ(0) = p and σ′(0) = X.
Without loss of generality, by taking ε sufficiently small, σ ⊂ x(U).

Key observation: σ can be represented in a certain manner in terms of
coordinates; we will use this representation over and over.

Let σ̂ = x−1 ◦ σ:
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σ̂ : (−ε, ε)→ U ⊂ R2, and in terms of components, σ̂(t) = (u(t), v(t)), t ∈
(−ε, ε),

σ̂ :
u = u(t) − ε < t < ε .
v = v(t)

(3.1)

σ̂(0) = x−1(σ(0)) = x−1(p) = (u0, v0). Using the IFT, it can be shown that σ̂
is a smooth curve in R2, that is, u = u(t) and v = v(t) are smooth functions.

Now, σ̂ = x−1 ◦ σ ⇒ σ = x ◦ σ̂ ⇒ σ(t) = x(σ̂(t)), i.e.

σ(t) = x(u(t), v(t)) , t ∈ (−ε, ε) . (3.2)

Remark. We say that σ̂ is the coordinate representation of σ; σ̂ is just σ
expressed in coordinates.

Returning to the proof, by the chain rule,

dσ

dt
=

∂x

∂u

du

dt
+
∂x

∂v

dv

dt
,

or, rewriting slightly,

σ′(t) = u′(t)xu(u(t), v(t)) + v′(t)xv(u(t), v(t)),

and setting t = 0, we obtain,

σ′(0) = u′(0)xu(u0, v0) + v′(0)xv(u0, v0) ,

and thus,
X = Axu(u0, v0) +Bxv(u0, v0) ,

where A = u′(0), B = v′(0), as was to be shown.

span {xu(u0, v0),xv(u0, v0)} ⊂ TpM : One must show that a vector of the
form,

Axu(u0, v0) +Bxv(u0, v0)

for any A,B ∈ R, is the velocity vector of a curve σ in M passing through p.
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EXERCISE 3.6. Show this. Hint: Let σ = x ◦ σ̂ where σ̂ is the parameter-
ized line, σ̂(t) = (At+u0, Bt+v0). Then, σ(t) = x(σ̂(t)) = x(At+u0, Bt+v0),
and apply the chain rule.

Tangent plane to M at p:

Let x be a proper patch in M containing p = x(u0, v0). Then the

tangent plane to M at p = plane through p spanned by
xu(u0, v0) and xv(u0, v0)

= plane through p perpendicular
to N = xu(u0, v0)× xv(u0, v0).

Equation of tangent plane:

a(x− x0) + b(y − y0) + c(z − z0) = 0 ,

where N = (a, b, c) and p = x(u0, v0) = (x0, y0, z0).

Unit normal vector field associated to a proper patch x : U →M ⊂ R3:

n =
xu × xv
|xu × xv|

,

n = n(u, v), n(u, v) ∈ Tx(u,v)R3, n(u, v) ⊥M .

Remark. The unit normal field is unique up to sign.
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Example. Compute the unit normal field to the surface z = x2 + y2 with
respect to the associated Monge patch.

We have, x : R2 → R3, x(u, v) = (u, v, u2 + v2), xu = (1, 0, 2u),xv =
(0, 1, 2v), and so,

xu × xv =

i j k
1 0 2u
0 1 2u

 = (−2u,−2v, 1)

Hence,

n =
(−2u,−2v, 1)

|(−2u,−2v, 1)|

n(u, v) =
(−2u,−2v, 1)√
1 + 4u2 + 4v2

.

EXERCISE 3.7. Let f : U ⊂ R2 → R be a smooth function and let
M=graph f . M is a smooth surface covered by a single patch - the associated
Monge patch x : U ⊂ R2 → R3 defined by x(u, v) = (u, v, f(u, v)). Show
that the unit normal vector field to M wrt x is given by,

n =
(−fu,−fv, 1)√

1 + f 2
u + f 2

v

where fu =
∂f

∂u
and fv =

∂f

∂v
.

Some Tensor Analysis

Consider overlapping patches,

x : U →M ⊂ R3 x = x(u1, u2)
y : V →M ⊂ R3 y = y(v1, v2).
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Let p ∈ x(U)∩y(V ). TpM has the two different bases at p: {x1,x2} , {y1,y2}

where we are using the shorthand, x1 =
∂x

∂u1
,x2 =

∂x

∂u2
,y1 =

∂y

∂v1
,y2 =

∂u

∂v2
.

Let X ∈ TpM . X can be expressed in two different ways,

X =
2∑
i=1

X ixi

=
2∑

k=1

X̃kyk

Classical tensor analysis is concerned with questions like the following:
How are the components X i and X̃k with respect to the two different bases
related? We now consider this.

By the smooth overlap property, f = y−1 ◦ x is a diffeomorphism on the
overlap. We have, f : x−1(W ) → y−1(W ), where W = x(U) ∩ x(V ), and
f(u1, u2) = (v1, v2) = (f 1(u1, u2), f 2(u1, u2)),

f :
v1 = f 1(u1, u2)
v2 = f 2(u1, u2)

,

i.e., f is the change of coordinates map; v1 and v2 depend smoothly on u1

and u2. On the overlap we have, x = y ◦ f , and hence, x(u1, u2) = y(v1, v2),
where v1, v2 depend on u1, u2 as above.

EXERCISE 3.8. (1) Use the chain rule to show,

xi =
∑
k

∂vk

∂ui
yk

(Note: This is essentially the same as the computation on p. 53, but
with the role of x and y reversed from that here).

(2) Use (1) to show,

X̃k =
∑
i

∂vk

∂ui
X i, k = 1, 2.
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(3) Show (2) implies [
X̃1

X̃2

]
=

[
∂vk

∂ui

]
︸ ︷︷ ︸
Df

[
X1

X2

]
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Additional Chapter 3 Exercises

1. The helicoid is the surface swept out by a rotating horizontal line as it
rises along the z-axis (see the figure below). It can be described by the
parameterized surface x : R2 → R3,

x(u, v) = (au cos v, au sin v, bv) ,

where a, b are positive constants. Show that x is a regular surface by
computing |xu × xv|. (Notation: xu = ∂x

∂u
, etc.)

2. (a) Let x : R2 → R3 be the map defined as follows: For each (u, v) ∈
R2, let x(u, v) be the point of intersection of the line through
(0, 0, 1) and (u, v, 0) with the sphere S2 = {(x, y, z) ∈ R3 : x2 +
y2 + z2 = 1}. (See the figure below.) Show that

x(u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

Hint: By parameterizing the line through (0, 0, 1) and (u, v, 0),
show that x(u, v) is of the form, x(u, v) = (0, 0, 1)+ t(u, v,−1) for
some t, and then determine t. (Remark: The map x is a proper
patch which covers all of S2 except the north pole. The inverse
map x−1 is called the stereographic projection of S2 onto R2.)
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(b) Let y(u, v) = (u, v,
√

1− u2 − v2) be the Monge patch associated
with the upper hemisphere z =

√
1− x2 − y2. Write out explicitly

the overlap map y−1 ◦ x, where x is as in part (a), and observe
that it is smooth.

3. Carefully apply the “inverse image theorem” to show that the graph of
the equation: xy + yz + zx = 1 is a smooth surface.

4. Let x̄ : U →M and ȳ : V →M be overlapping patches in M containing
the point p. Consider the tangent vector X ∈ TpM with respect to
both coordinate vector bases, X =

∑
iX

ix̄i =
∑

j X̃
j ȳj. Show that

the components of X in the two coordinate ssytems are related by,

X̃k =
2∑
i=1

∂vk

∂ui
X i,

where
[
∂vk

∂ui

]
is the Jacobian matrix of the change of coordinate map

f = ȳ−1 ◦ x, f(u1, u2) = (v1(u1, u2), v2(u1, u2)).

5. Let M and N be surfaces. A map f : M → N is said to be smooth
provided for each p ∈M there is a proper patch x̄ : U →M containing
p and a proper patch ȳ : V → N containing f(p) , with f(x̄(U)) ⊂ ȳ(V )
such that f̂ = ȳ−1 ◦ f ◦ x̄ : U → V is a smooth Euclidean map.

Let f : M → N be smooth. For a fixed point p ∈ M we define
a mapping between tangent spaces df : TpM → Tf(p)N , called the
differential of f , as follows. For any X ∈ TpM , let α : (−ε, ε) → M
be a smooth curve in M such that α(0) = p and α′(0) = X. Then
β = f ◦ α : (−ε, ε) → N will be a smooth curve in N passing through
f(p). We now define: df(X) = β′(0).

Problem: Show that df is a linear map, and, in fact, that the matrix
representing df with respect to the coordinate bases {x̄i} at p and {ȳj}
at f(p) is the Jacobian matrix of f̂ = ȳ−1 ◦ f ◦ x̄ (evaluated at x̄−1(p)).
(Hint: Show that β̂(t) = f̂(u1(t), u2(t)), where β̂(t) = ȳ−1 ◦ β(t) =
(v1(t), v2(t)) and α(t) = x̄(u1(t), u2(t)). Then apply the chain rule.)
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The First Fundamental Form
(Induced Metric)

We begin with some definitions from linear algebra.

Definition. Let V be a vector space (over IR). A bilinear form on V is a
map of the form B : V × V → IR which is bilinear, i.e. linear in each “slot”,

B(aX + bY, Z) = aB(X,Z) + bB(Y, Z),

B(X, cY + dZ) = cB(X, Y ) + dB(X,Z).

A bilinear formB is symmetric providedB(X, Y ) = B(Y,X) for allX, Y ∈ V .

Definition. Let V be a vector space. An inner product on V is a symmetric
bilinear form 〈 , 〉 : V × V → IR which, in addition, is positive definite,

〈X,X〉 ≥ 0 for all X and = 0 iff X = 0 .

Example. 〈 , 〉 : TpIR
3 × TpIR3 → IR,

〈X, Y 〉 = X · Y (usual Euclidean dot product) .

EXERCISE 4.1. Verify carefully that the Euclidean dot product is indeed
an inner product.

Definition. Let M be a surface. A metric on M is an assignment, to each
point p ∈M , of an inner product 〈 , 〉 : TpM × TpM → IR.

71
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Because our surfaces sit in Euclidean space, they inherit in a natural way,
a metric called the induced metric or first fundamental form.

Definition. Let M be a surface. The induced metric (or first fundamental
form) of M is the assignment to each p ∈M of the inner product,

〈 , 〉 : TpM × TpM → IR ,

〈X, Y 〉 = X · Y (ordinary scalar product of X and Y

viewed as vectors in IR3 at p)

I.e., the induced metric is just the Euclidean dot product, restricted to the
tangent spaces of M . We will only consider surfaces in the induced metric.
Just as the Euclidean dot product contains all geometric information about
IR3, the induced metric contains all geometric information about M , as we
shall see.

The Metric in a Coordinate Patch.

Let x : U ⊂ IR2 → M ⊂ IR3 be a proper patch in M . Let p ∈ x(U) be
any point in x(U), p = x(u1, u2), and let X, Y ∈ TpM . Then,

X = X1 ∂x

∂u1
+X2 ∂x

∂u2
= X1x1 +X2x2 ,

X =
∑
i

X ixi , xi = xi(u
1, u2) ,
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and similarly,

Y =
∑
j

Y jxj .

Then,

〈X, Y 〉 = 〈
∑
i

X ixi,
∑
j

Y jxj〉

=
∑
i,j

X iY j〈xi,xj〉.

The metric components are the functions gij : U → IR, 1 ≤ i, j ≤ 2, defined
by

gij = 〈xi,xj〉 , gij = gij(u
1, u2) . (4.1)

Thus, in coordinates,

〈X, Y 〉 =
2∑

i,j=1

gijX
iY j . (4.2)

Note that the metric in x(U) is completely determined by the gij’s. The
metric components may be displayed as a 2× 2 matrix,

[gij] =

[
g11 g12

g21 g22

]
.

Note: gij = 〈xi,xj〉 = 〈xj,xi〉 = gji. Hence, the matrix of metric compo-
nents is symmetric; and there are only three distinct components,

g11 = 〈x1,x1〉, g12 = 〈x1,x2〉 = 〈x2,x1〉 = g21, g22 = 〈x2,x2〉 .

Notations:

1. Gauss: g11 = E, g12 = g21 = F, g22 = G.

2. x(u, v) = (x(u, v), y(u, v), z(u, v)). Then one writes:

guu = 〈xu,xu〉, guv = 〈xu,xv〉, gvv = 〈xv,xv〉 .
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Example. Consider the parameterization of S2
r in terms of geographic coor-

dinates,
x(θ, φ) = (r sin θ cosφ, r sin θ sinφ, r cos θ) ,

0 < θ < π, 0 < φ < 2π. We compute the metric components in these
coordinates. We have,

xθ =
∂x

∂θ
= r(cos θ cosφ, cos θ sinφ,− sin θ),

xφ = r(− sin θ sinφ, sin θ cosφ, 0) ,

gθθ = 〈xθ,xθ〉

= r2[cos2 θ cos2 φ+ cos2 θ sin2 φ+ sin2 θ]

= r2(cos2 θ + sin2 θ) = r2 ,

gθφ = 〈xθ,xφ〉

= r2[− cos θ cosφ sin θ sinφ+ cos θ sinφ sin θ cosφ]

= 0 (geometric significance?) ,

gφφ = r2[sin2 θ sin2 φ+ sin2 θ cos2 φ]

= r2 sin2 θ .

Thus,

[gij] =

[
gθθ gθφ
gφθ gφφ

]
=

[
r2 0
0 r2 sin2 θ

]

Length and Angle Measurement in M .

Let σ : [a, b] → M ⊂ IR3 be a smooth curve in a surface M . Viewed as
a curve in IR3, σ(t) = (x(t), y(t), z(t)), we can compute its length by the
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formula,

Length of σ =

∫ b

a

∣∣∣∣dσdt
∣∣∣∣dt

=

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

But this formula does not make sense to creatures living in the surface: x, y, z
are Euclidean space coordinates. Creatures living in the surface must use
surface coordinates – i.e., we must express σ in terms of surface coordinates.

Let x : U →M ⊂ IR3 be a proper patch in M and suppose σ is contained
in this patch, σ ⊂ x(U) :

We express σ in terms of coordinates: σ̂ = x−1 ◦ σ : [a, b] → U ⊂
IR2, σ̂(t) = (u′(t), u2(t)), i.e,

σ̂ :
u1 = u1(t)
u2 = u2(t)

, a ≤ t ≤ b.

Then, σ = x ◦ σ̂, i.e., σ(t) = x(σ̂(t)), hence (see Equation (3.2)),

σ(t) = x(u1(t), u2(t)) .

By the chain rule,

dσ

dt
=

∂x

∂u1

du1

dt
+
∂x

∂u2

du2

dt

=
du1

dt
x1 +

du2

dt
x2 ,
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or,
dσ

dt
=
∑
i

dui

dt
xi .

This shows that
dui

dt
, i = 1, 2, are the components of the velocity vector with

respect to the basis {x1,x2}.

Computing the dot product,

〈dσ
dt
,
dσ

dt
〉 = 〈

∑
i

dui

dt
xi,
∑
j

duj

dt
xj〉

=
∑
i,j

dui

dt

duj

dt
〈xi,xj〉

=
2∑

i,j=1

gij
dui

dt

duj

dt
.

Hence, for the speed in surface coordinates, we have,

∣∣∣∣dσdt
∣∣∣∣ =

√√√√ 2∑
i,j=1

gij
dui

dt

duj

dt
.

For length, we then have,

Length of σ =

∫ b

a

√√√√∑
i,j

gij
dui

dt

duj

dt
dt

=

∫ b

a

√
g11

(
du1

dt

)2

+ 2g12
du1

dt

du2

dt
+ g22

(
du2

dt

)2

dt (4.3)
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Arc length element. Let s denote arc length along σ; s can be computed in
terms of t as follows. s = s(t), a ≤ t ≤ b,

s(t) = length of σ from time a to time t

=

∫ t

a

√∑
i,j

gij
dui

dt

duj

dt
dt .

and hence,

ds

dt
=

√√√√∑
i,j

gij
dui

dt

duj

dt
.

In terms of differentials,

ds =

√∑
i,j

gij
dui

dt

duj

dt
dt

ds2 =

(∑
i,j

gij
dui

dt

duj

dt

)
dt2

=
∑
i,j

gij

(
dui

dt
dt

)(
duj

dt
dt

)
and we arrive at the expression for the arc length element in terms of the
metric components,

ds2 =
2∑

i,j=1

gijdu
iduj (4.4)

Heuristically, moving from a point with coordinates (u1, u2) to the near by
point (u1 + du1, u2 + du2), produces an arc length ds given by (4.4).
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Traditionally, one displays the metric (or, metric components gij) by writ-
ing out the arc length element.

Notations:

ds2 = g11(du1)2 + 2g12du
1du2 + g22(du2)2

ds2 = guudu
2 + 2guvdudv + gvvdv

2

(u1 = u, u2 = v)

ds2 = Edu2 + 2Fdudv +Gdv2 (Gauss).

Remark. These expressions for arc length element of a surface M generalize
the expression for the arc length element in the Euclidean u-v plane we
encounter in calculus,

ds2 = du2 + dv2

(i.e. guu = 1, guv = 0, gvv = 1).

Example. Write out the arc length element for the sphere S2
r parameterized

in terms of geographic coordinates,

x(θ, φ) = (r sin θ cosφ, r sin θ sinφ, r cos θ) .

We previously computed the gij’s,

[gij] =

[
gθθ gθφ
gφθ gφφ

]
=

[
r2 0
0 r2 sin2 θ

]
,

i.e., gθθ = r2, gθφ = gφθ = 0, gφφ = r2 sin2 θ. So,

ds2 = gθθdθ
2 + 2gθφdθdφ+ gφφdφ

2

ds2 = r2dθ2 + r2 sin2 θdφ2 .

But this expression is familiar from calculus as the arc length element which
can be derived from heuristic geometric considerations:
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ds2 = d`2
1 + d`2

2.

d`1 = rdθ, d`2 = r sin θdφ

ds2 = r2dθ2 + r2 sin2 θdφ2.

EXERCISE 4.2. Consider the parameterization of the x-y plane in terms
of polar coordinates,

x = r cos θ
x : y = r sin θ , 0 < r <∞, 0 < θ < 2π ,

z = 0

i.e., x(r, θ) = (r cos θ, r sin θ, 0), 0 < r < ∞, 0 < θ < 2π. Compute the gij’s
with respect to these coordinates. Show that the arc length element in this
case is: ds2 = dr2 + r2dθ2.

Angle Measurement.

X =
∑
i

X ixi,

Y =
∑
j

Y jxj,

cos θ =
〈X, Y 〉
|X||Y |

=

∑
gijX

iY j√∑
gijX iXj

√∑
gijY iY j

.
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Example. Determine the angle between the coordinate vectors x1 =
∂x

∂u1

and x2 =
∂x

∂u2
in terms of the gij’s.

cos θ =
〈x1,x2〉
|x1| x2|

=
g12√
g11
√
g22

(|x1| =
√
〈x1,x1〉 =

√
g11, etc.)

The Metric is intrinsic:

This discussion is somewhat heuristic. We claim that the gij’s are intrin-
sic, i.e. in principle they can be determined by measurements made in the
surface.

Let x : U → M be a proper patch in M ; x = x(u1, u2) = x(u, v) (i.e.,
u1 = u, u2 = v. Consider the coordinate curve u

σ−→ x(u, v0) passing through
x(u0, v0).

Let s = s(u) be the arc length function along σ, i.e.,

s(u) = length of σ from u0 to u

=

∫ u

u0

∣∣∣∣∂x

∂u

∣∣∣∣ du
=

∫ u

u0

√
guudu

(∣∣∣∣∂x

∂u

∣∣∣∣ =
√
guu

)
.
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By making length measurements in the surface the function s = s(u) can be
determined known. Then by calculus, the derivative,

ds

du
=
√
guu

is known. Therefore g11 = guu, and similarly g22 = gvv, can in principal be
determined by measurements made in the surface.

The metric component g12 can then be determined by angle measurement,

g12 = 〈x1,x2〉 = |x1||x2| cos θ

=
√
g11
√
g22 · cos(angle between x1,x2) .

Hence g12 is also measurable. Thus all metric components can be determined
by measurements made in the surface, i.e.

the metric components and all quantities determined from them are
intrinsic.

Surface Area.

Let M be a surface, and let x : U →M be a proper patch in M . Consider
a bounded regionR contained in x(U); we haveR = x(W ) for some bounded
region W in U :

We want to obtain (i.e. heuristically motivate) a formula for the area of
R = x(W ).
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Restrict attention to R = x(W ); partition W into small rectangles:

Let ∆S = area of the small patch corresponding to the coordinate rectangle.
Then,

∆S ≈ area of the parallelogram spanned by
⇀

PQ and
⇀

PR ,

∆S ≈ |
⇀

PQ ×
⇀

PR | .

But,

⇀

PQ = x(u+ ∆u, v)− x(u, v) ≈ ∂x

∂u
∆u ,

⇀

PR = x(u, v + ∆v)− x(u, v) ≈ ∂x

∂v
∆v ,

and thus,

∆S ≈
∣∣∣∣∂x

∂u
∆u× ∂x

∂v
∆v

∣∣∣∣
≈

∣∣∣∣∂x

∂u
× ∂x

∂v

∣∣∣∣∆u∆v .

The smaller the increments ∆u and ∆v, the better the approximation.

dS = the area element of the surface corresponding to the

coordinate increments du, dv ,

dS =

∣∣∣∣∂x

∂u
× ∂x

∂v

∣∣∣∣ du dv .
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To obtain the total area of R, we must sum up all these area elements -
but the summing up process is integration:

Area of R =

∫ ∫
dS ,

Area of R =

∫ ∫
W

∣∣∣∣∂x

∂u
× ∂x

∂v

∣∣∣∣ du dv ,
where R = x(W ).

This is a perfectly reasonable formula for computing surface area - but
not for 2-dimensional creatures living in the surface. It involves the cross
product which is an IR3 concept. We now show how this area formula can
be expressed in an intrinsic way (i.e. involving the gij’s ).

Using generic notation, u1 = u, u2 = v, x = x(u1, u2) we write,

Area of R =

∫ ∫
W

∣∣∣∣ ∂x

∂u1
× ∂x

∂u2

∣∣∣∣ du1du2

=

∫ ∫
W

|x1 × x2|du1du2

Now introduce the notation,

g := det[gij], gij = 〈xi,xj〉 .

Claim: g = |x1 × x2|2

Proof. Recall the vector identity,

|a× b|2 = |a|2|b|2 − (a · b)2 .

Hence,

|x1 × x2|2 = |x1|2|x2|2 − 〈x1,x2〉2

= 〈x1,x1〉〈x2,x2〉 − 〈x1,x2〉2

= g11g22 − g2
12 = g,
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But,

g = det[gij] = det

 g11 g12

g21 g22

 = g11g22 − g2
12 ,

where we have used g21 = g12.

Thus, the surface area formula may be expressed as,

Area of R =

∫ ∫
W

√
g du1du2 (R = x(W )) (4.5)

=

∫ ∫
W

dS (4.6)

where,

dS =
√
g du1du2 . (4.7)

Example. Compute the area of the sphere of radius r.

S2
r : x2 + y2 + z2 = r2 .

Parameterize with respect to geographical coordinates, x : U → S2
r ,

x(θ, φ) = (r sin θ cosφ, r sin θ sinφ, r cos θ) ,

U : 0 < θ < π, 0 < φ < 2π .
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We have,

Area of S2
r =

∫ ∫
U

dS , where dS =
√
gdθdφ .

Now,

g = det[gij] = det

[
gθθ gθφ
gφθ gφφ

]

= det

[
r2 0
0 r2 sin2 θ

]
g = r4 sin2 θ

Thus,

dS =
√
r4 sin2 θ dθdφ = r2 sin θdθdφ

Side remark: This expression for the surface area element of a sphere is
familiar from calculus or physics where it is usually derived by heuristic
considerations:

dS = d`1d`2,

d`1 = rdθ, d`2 = r sin θdφ

dS = (rdθ)(r sin θdφ)

= r2 sin θdθdφ.

Continuing the computation of the surface area of S2
r ,

Area of S2
r =

∫ ∫
U

r2 sin θdθdφ =

∫ ∫
U

r2 sin θdθdφ

=

∫ 2π

0

∫ π

0

r2 sin θdθdφ =

∫ 2π

0

r2[− cos θ]|π0 dφ

=

∫ 2π

0

2r2dφ = 2r2φ|2π0 = 4πr2 .
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The surface area formula involves a choice of coordinates, i.e. a choice of
proper patch. It is important to recognize that the formula is independent
of this choice.

Proposition 4.1. The area formula is independent of the choice of coordi-
nate patch.

Let x : U → M , y : V → M be proper patches, and suppose R is
contained in x(U) ∩ y(V ):

Set,

gij = 〈xi,xj〉, g = det[gij] ,

g̃ij = 〈yi,yj〉, g̃ = det[g̃ij] .

Then the claim is that,∫ ∫
x−1(R)

√
gdu1du2 =

∫ ∫
y−1(R)

√
g̃dv1dv2

Proof. The proof is an application of the change of variable formula for double
integrals.

Let f : U ⊂ IR2 → V ⊂ IR2 be a diffeomorphism, where U, V are bounded
regions in IR2.
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f :
v1 = f 1(u1, u2)
v2 = f 2(u1, u2)

.

Then, the change of variable formula for double integrals is as follows,∫ ∫
V

h(v1, v2)dv1dv2 =

∫ ∫
U

h ◦ f(u1, u2)| detDf |du1du2

=

∫ ∫
U

h(f 1(u1, u2), f 1(u1, u2))

∣∣∣∣∂(v1, v2)

∂(u1, u2)

∣∣∣∣ du1du2

,

or, in briefer notation,∫ ∫
V

hdv1dv2 =

∫ ∫
U

h

∣∣∣∣∂(v1, v2)

∂(u1, u2)

∣∣∣∣ du1du2 .

In the case at hand, f = y−1 ◦ x : x−1(R) → y−1(R), and h =
√
g̃. So,

by the change of variable formula,∫ ∫
y−1(R)

√
g̃dv1dv2 =

∫ ∫
x−1(R)

√
g̃

∣∣∣∣∂(v1, v2)

∂(u1, u2)

∣∣∣∣ du1du2

Thus, to complete the proof, it suffices to establish the following lemma.

Lemma 4.2. g = det[gij], g̃ = det[g̃ij]. are related by,

√
g =

√
g̃

∣∣∣∣∂(v1, v2)

∂(u1, u2)

∣∣∣∣ .
Proof of the lemma: It follows from Exercise 3.4 that,

∂x

∂u1
× ∂x

∂u2
=
∂(v1, v2)

∂(u1, u2)

∂y

∂v1
× ∂y

dv2

or,

x1 × x2 =
∂(v1, v2)

∂(u1, u2)
y1 × y2 .
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Hence,

g = det[gij] = |x1 × x2|2

=

(
∂(v1, v2)

∂(u1, u2)

)2

|y1 × y2|2

=

(
∂(v1, v2)

∂(u1, u2)

)2

g̃ .

Taking square roots yields the result.

EXERCISE 4.3. Consider the torus of large radius R and small radius r
described in Exercise 3.3. Use the intrinsic surface area formula and the
parameterization given in Exercise 3.3 to compute the surface area of the
torus. Answer: 4π2Rr.

EXERCISE 4.4. Let f : U ⊂ IR2 → IR be a smooth function of two
variables. Let M be the graph of f |w = {(x, y, z) ∈ IR3 : z = f(x, y), (x, y) ∈
W}, where W is a bounded subset of U . Derive the following standard
formula from calculus for the surface area of M ,

Area of M =

∫ ∫
W

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dxdy ,

by considering the Monge patch associated to f .

More Tensor Analysis

Let x : U → M, y : V → M be overlapping patches in a surface M ,
W := x(U) ∩ y(V ) 6= ∅. Let f = y−1 ◦ x : x−1(W )→ y−1(W ),

f :
v1 = f 1(u1, u2)
v2 = f 2(u1, u2)

be the smooth overlap map, cf., Proposition 3.4. Introduce the metric com-
ponents with respect to each patch,

gij = 〈xi,xj〉, g̃ij = 〈yi,yj〉 .

How are these metric components related on the overlap?
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EXERCISE 4.5. Show that,

gij =
2∑

a,b=1

g̃ab
∂va

∂ui
∂vb

∂uj
, i, j = 1, 2.

These equations can be expressed as a single matrix equation,

[gij] =

[
∂va

∂ui

]t
[g̃ab]

[
∂vb

∂uj

]
.

Taking determinants we obtain,

g = det[gij] = det[∗]t[∗][∗]

= det[∗]t det[∗] det[∗]

= det

[
∂va

∂ui

]
det[g̃ij] det

[
∂vb

∂uj

]
= g̃(detDf)2

g = g̃

[
∂(v1, v2)

∂(u1, u2)

]2

,

our second derivation of this formula.

Remark. Interchanging the roles of x and y above we obtain,

g̃ab =
∑
i,j

gij
∂ui

∂va
∂uj

∂vb
,

which involves the Jacobian of f−1. Compare this “transformation law”
for the metric components to the transformation law for vector components
considered in Exercise 3.8. Vector fields are “contravariant” tensors. The
metric 〈 , 〉 is a “covariant” tensor.
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Additional Chapter 4 Exercises

1. Compute the metric components g11 = guu, g12 = guv, g22 = gvv for the
helicoid (cf. Exercise #1 in Chapter 3 Additional Exercises).

2. Consider the ellipsoid,

x2

a2
+
y2

b2
+
z2

c2
= 1 , (a, b, c > 0)

x

y

z

a
b

(a) Introduce ‘geographic’ coordinates θ, φ on the ellipsoid by slightly
modifying the equations for spherical coordinates.

(b) Write down the proper patch x associated with the geographic
coordinates above, and compute the gij’s (gθθ, etc.).

3. Let U = {(r, θ) ∈ R2 : 0 < r < ∞, 0 < θ < 2π}. The map x : U ⊂
R2 → R3 defined by x(r, θ) = (r cos θ, r sin θ, 0) is a proper patch which
parameterizes the x-y plane in terms of polar coordinates.

(a) Compute the metric components gij (i.e., grr, etc.) with respect
to this parameterization.

(b) The polar equation: r = r(θ), α ≤ θ ≤ β, describes a curve σ in
the x-y plane. Use the length formula, Equation (4.2) on p. 72,
to show,

Length of σ =

∫ β

α

√(
dr

dθ

)2

+ r2 dθ ,

by parmeterizing σ appropriately.

(c) Use part (b) to compute the length of the logarithmic spiral r =
e−θ,
0 ≤ θ <∞.

4. Consider the map x : U ⊂ R2 → R3, U = {(0 < t < 2π,−π < θ < π},

x(t, θ) = ((R + r cos t) cos θ, (R + r cos t) sin θ, r sin t)

which parameterizes the torus, as described in Exercise 3.3, on p. 53.



CHAPTER 4. THE FIRST FUNDAMENTAL FORM 91

(a) Compute the metric components gij (i.e., gtt, etc.) with respect
to this parameterization.

(b) Use the gij’s to compute the surface area element dS and find the
surface area of the torus.

5. Surfaces of revolution. Rotate the regular curve σ : x = r(t), z = z(t),
a ≤ t ≤ b, in the x-z plane about the z-axis to obtain a surface of
revolution M (cf., Chapter 3, p 52f).

(a) Compute the metric components g11 = grr, etc.

(b) Use part (a) and Equation 4.5 to show,

Surface area of M = 2π

∫ b

a

r
√

(r′)2 + (z′)2 dt.

(c) Pappus’ Theorem. Let s denote arc length along σ, ` = the length
of σ, and ρ(s) = r(t(s)) be the radial function reparameterized
in terms of arc length. Use part (b) to show that the surface
area of M = 2πρ̄`, where ρ̄ is the average value of ρ = ρ(s), ρ̄ =∫ `

0
ρ(s) ds/`. (Remark: Note that, by symmetry considerations,

ρ̄ = R for the torus in part (c). This provides a check on part
(c)).



Chapter 5

The Second Fundamental Form

Directional Derivatives in R3.

Let f : U ⊂ IR3 → IR be a smooth function defined on an open subset
of IR3. Fix p ∈ U and X ∈ TpIR3. The directional derivative of f at p in
the direction X, denoted DXf is defined as follows. Let σ : IR→ IR3 be the
parameterized straight line, σ(t) = p+ tX (note σ(0) = p and σ′(0) = X):

Then,

DXf =
d

dt
f ◦ σ(t)|t=0

=
d

dt
f(p+ tX)|t=0(

= lim
t→0

f(p+ tX)− f(p)

t

)
.

92
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Proposition 5.1. The directional derivative is given by the following for-
mula,

DXf = X · ∇f(p)

= (X1, X2, X3) ·
(
∂f

∂x
(p),

∂f

∂y
(p),

∂f

∂z
(p)

)

= X1 ∂f

∂x1
(p) +X2 ∂f

∂x2
(p) +X3 ∂f

∂x3
(p)

=
3∑
i=1

X i ∂f

∂xi
(p).

Proof. Chain rule!

Vector Fields on IR3. A vector field on IR3 is a rule which assigns to each
point of IR3 a vector at the point,

x ∈ IR3 → Y (x) ∈ TxIR3

Analytically, a vector field is described by a mapping of the form,

Y : U ⊂ IR3 → IR3,

Y (x) = (Y 1(x), Y 2(x), Y 3(x)) ∈ TxIR3 .

The components of Y are the real valued functions: Y i : U → IR, i = 1, 2, 3.

Example. Y : IR3 → IR3, Y (x, y, z) = (y+z, z+x, x+y). E.g., Y (1, 2, 3) =
(5, 4, 3), etc. Y 1 = y + z, Y 2 = z + x, and Y 3 = x+ y.
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The directional derivative of a vector field is defined in a manner similar
to the directional derivative of a function: Fix p ∈ U , X ∈ TpIR

3. Let
σ : IR→ IR3 be the parameterized line σ(t) = p+ tX (σ(0) = p, σ′(0) = X).
Then t → Y ◦ σ(t) is a vector field along σ in the sense of the definition in
Chapter 2.

Then, the directional derivative of Y in the direction X at p, is defined
as,

DXY =
d

dt
Y ◦ σ(t)|t=0 . (5.1)

I.e., to compute DXY , restrict Y to σ to obtain a vector valued function of
t, and differentiate with respect to t.

In terms of components, Y = (Y 1, Y 2, Y 3),

DXY =
d

dt
(Y 1 ◦ σ(t), Y 2 ◦ σ(t), Y 3 ◦ σ(t)) |t=0

=

(
d

dt
Y 1 ◦ σ(t)|t=0 ,

d

dt
Y 2 ◦ σ(t)|t=0 ,

d

dt
Y 3 ◦ σ(t)|t=0

)
= (DXY

1, DXY
2, DXY

3).
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Directional derivatives on surfaces.

Let M be a surface, and let f : M → IR be a smooth function on M .
Recall, this means that f̂ = f ◦x is smooth for all proper patches x : U →M
in M .

Definition. For p ∈M , X ∈ TpM , the directional derivative of f at p in the
direction X, denoted ∇Xf , is defined as follows. Let σ : (−ε, ε)→ M ⊂ IR3

be any smooth curve in M such that σ(0) = p and σ′(0) = X:

Then,

∇Xf =
d

dt
f ◦ σ(t)|t=0 (5.2)

I.e., to compute ∇Xf , restrict f to σ and differentiate with respect to pa-
rameter t.

Proposition 5.2. The directional derivative is well-defined, i.e. independent
of the particular choice of σ.

Proof. Let x : U → M be a proper patch containing p. Express σ in terms
of coordinates in the usual manner,

σ(t) = x(u1(t), u2(t)) .

By the chain rule,

dσ

dt
=
∑ dui

dt
xi

(
xi =

∂x

∂ui

)
.

X ∈ TpM ⇒ X =
∑

X ixi. The initial condition,
dσ

dt
(0) = X then implies
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dui

dt
(0) = X i , i = 1, 2.

Now,

f ◦ σ(t) = f(σ(t)) = f(x(u1(t), u2(t))

= f ◦ x(u1(t), u2(t))

= f̂(u1(t), u2(t)).

Hence, by the chain rule,

d

dt
f ◦ σ(t) =

∂f̂

∂u1

du1

dt
+
∂f̂

∂u2

du2

dt

=
∑
i

∂f̂

∂ui
dui

dt
=
∑
i

dui

dt

∂f̂

∂ui
.

Therefore,

∇Xf =
d

dt
f ◦ σ(t)|t=0

=
∑
i

dui

dt
(0)

∂f̂

∂ui
(u1, u2) , (p = x(u1, u2))

∇Xf =
∑
i

X i ∂f̂

∂ui
(u1, u2) ,

or simply,

∇Xf =
∑

X i ∂f̂

∂ui

= X1 ∂f̂

∂u1
+X2 ∂f̂

∂u2
. (5.3)
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Example. Let X = x1. Since x1 = 1 · x1 + 0 · x2, X1 = 1 and X2 = 0.

Hence the above equation implies, ∇x1f =
∂f̂

∂u1
. Similarly, ∇x2f =

∂f̂

∂u2
. I.e.,

∇xi
f =

∂f̂

∂ui
, i = 1, 2. (5.4)

The following proposition summarizes some basic properties of directional
derivatives in surfaces.

Proposition 5.3.

(1) ∇(aX+bY )f = a∇Xf + b∇Y f

(2) ∇X(f + g) = ∇Xf +∇Xg

(3) ∇Xfg = (∇Xf)g + f(∇Xg)

EXERCISE 5.1. Prove this proposition.

Vector fields along a surface.

A vector field along a surface M is a rule which assigns to each point of
M a vector at that point,

x ∈M → Y (x) ∈ TxIR3

N.B. Y (x) need not be tangent to M .

Analytically vector fields along a surface M are described by mappings.

Y : M → IR3

Y (x) = (Y 1(x), Y 2(x), Y 3(x)) ∈ TxIR3

Components of Y : Y i : M → IR, i = 1, 2, 3. We say Y is smooth if its
component functions are smooth.

The directional derivative of a vector field along M is defined in a manner
similar to the directional derivative of a function defined on M .
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Given a vector field along M, Y : M → IR3, for p ∈ M,X ∈ TpM , the
directional derivative of Y in the direction X, denoted ∇XY , is defined as,

∇XY =
d

dt
Y ◦ σ(t)|t=0

where σ : (−ε, ε) → M is a smooth curve in M such that σ(0) = p and
dσ

dt
(0) = X.

I.e. to compute ∇XY , restrict Y to σ to obtain a vector valued function of
t - then differentiate with respect to t.

Proposition 5.4. If Y (x) = (Y 1(x), Y 2(x), Y 3(x)) then,

∇XY = (∇XY
1,∇XY

2,∇XY
3) .

Proof. Exercise.

Surface Coordinate Expression. Let x : U → M be a proper patch in M

containing p. Let X ∈ TpM , X =
∑
i

xixi. An argument like that for

functions on M shows,

∇XY =
2∑
i=1

X i ∂Ŷ

∂ui
(u1, u2) , (p = x(u1, u2))

where Ŷ = Y ◦ x : U → IR3 is Y expressed in terms of coordinates.
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EXERCISE 5.2. Derive the expression above for ∇XY . In particular, show

∇xi
Y =

∂Ŷ

∂ui
, i = 1, 2 . (5.5)

Some basic properties are described in the following proposition.

Proposition 5.5.

(1) ∇aX+bYZ = a∇XZ + b∇YZ

(2) ∇X(Y + Z) = ∇XY +∇XZ

(3) ∇X(fY ) = (∇Xf)Y + f∇XY

(4) ∇X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

The Weingarten Map and the 2nd Fundamental Form.

We are interested in studying the shape of surfaces in IR3. Our approach
(essentially due to Gauss) is to study how the unit normal to the surface
“wiggles” along the surface.

The objects which describe the shape of M are:

1. The Weingarten Map, or shape operator. For each p ∈ M this is a
certain linear transformation L : TpM → TpM .

2. The second fundamental form. This is a certain bilinear form L : TpM×
TpM → IR associated in a natural way with the Weingarten map.

We now describe the Weingarten map. Fix p ∈ M . Let n : W →
IR3, p ∈ W → n(p) ∈ TpIR3, be a smooth unit normal vector field defined
along a neighborhood W of p (see figure next page).
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Remarks

1. n can always be constructed by introducing a proper patch x : U →
M, x = x(u1, u2) containing p:

n̂ =
x1 × x2

|x1 × x2|
,

n̂ : U → IR3, n̂ = n̂(u1, u2). Then, n = n̂ ◦ x−1 : x(U) → IR3 is a smooth
unit normal v.f. along x(U).

2. The choice of n is not quite unique: n→ −n; choice of n is unique “up
to sign”

3. A smooth unit normal field n always exists in a neighborhood of any
given point p, but it may not be possible to extend n to all of M . This
depends on whether or not M is an orientable surface.

Ex. Möbius band.

Lemma 5.6. Let M be a surface, p ∈ M , and n be a smooth unit normal
vector field defined along a neighborhood W ⊂ M of p. Then for any X ∈
TpM , ∇Xn ∈ TpM .
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Proof. It suffices to show that ∇Xn is perpendicular to n. |n| = 1 ⇒
〈n, n〉 = 1⇒

∇X〈n, n〉 = ∇X1

〈∇Xn, n〉+ 〈n,∇Xn〉 = 0

2〈∇Xn, n〉 = 0

and hence ∇Xn ⊥ n.

Definition. Let M be a surface, p ∈M , and n be a smooth unit normal v.f.
defined along a nbd W ⊂M of p. The Weingarten Map (or shape operator)
is the map L : TpM → TpM defined by,

L(X) = −∇Xn .

Remarks

1. The minus sign is a convention – will explain later.

2. L(X) = −∇Xn = − d

dt
n ◦ σ(t)|t=0

Lemma 5.7. L : TpM → TpM is a linear map, i.e.,

L(aX + bY ) = aL(X) + bL(Y ) .

for all X, Y,∈ TpM, a, b ∈ IR.

Proof. This follows from properties of directional derivative,

L(aX + bY ) = −∇aX+bY n

= −[a∇Xn+ b∇Y n]

= a(−∇Xn) + b(−∇Y n)

= aL(X) + bL(Y ).
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Example. Let M be a plane in IR3:

M : ax+ by + cz = d .

Determine the Weingarten Map at each point of M . We note that unit
normal is given by,

n =
(a, b, c)√
a2 + b2 + c2

=

(
a

λ
,
b

λ
,
c

λ

)
,

where λ =
√
a2 + b2 + c2. Hence,

L(X) = −∇Xn = −∇X

(
a

λ
,
b

λ
,
c

λ

)

= −
(
∇X

a

λ
,∇X

b

λ
,∇X

c

λ

)
= 0.

Therefore L(X) = 0 ∀ X ∈ TpM , i.e. L ≡ 0.

Example. Let M = S2
r be the sphere of radius r, let n be the outward

pointing unit normal. Determine the Weingarten map at each point of M .

Fix p ∈ S2
r , and let X ∈ TpS2

r . Let σ : (−ε, ε)→ S2
r be a curve in S2

r such

that σ(0) = p,
dσ

dt
(0) = X

Then,

L(X) = −∇Xn = − d

dt
n ◦ σ(t)|t=0 .
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But note, n ◦ σ(t) = n(σ(t)) =
σ(t)

|σ(t)|
=
σ(t)

r
. Hence,

L(X) = − d

dt

σ(t)

r
|t=0 = −1

r

dσ

dt
|t=0

L(X) = −1

r
X .

for all X ∈ TpM . Hence,

L = −1

r
id , (5.6)

where id : TpM → TpM is the identity map, id(X) = X.

Remark: If we had taken the inward pointing normal then L =
1

r
id.

Definition. For each p ∈ M , the second fundamental form is the bilinear
form
L : TpM × TpM → IR defined by,

L(X, Y ) = 〈L(X), Y 〉 (5.7)

= −〈∇Xn, Y 〉 .

Note that L is indeed bilinear, e.g.,

L(aX + bY, Z) = 〈L(aX + bY ), Z〉
= 〈aL(X) + bL(Y ), Z〉
= a〈L(X), Z〉+ b〈L(Y ), Z〉
= aL(X,Z) + bL(Y, Z).

Example. If M is a plane, then L ≡ 0:

L(X, Y ) = 〈L(X), Y 〉 = 〈0, Y 〉 = 0 .

Example. The sphere S2
r of radius r, L : TpS

2
r × TpS2

r → IR,

L(X, Y ) = 〈L(X), Y 〉

= 〈−1

r
X, Y 〉

= −1

r
〈X, Y 〉
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Hence, L = −1

r
〈 , 〉. The second fundamental form is a multiple of the first

fundamental form!

Coordinate expressions

Let x : U →M be a patch containing p ∈M . Then {x1,x2} is a basis for
TpM . We express L : TpM → TpM and L : TpM × TpM → R with respect
to this basis. Since L(xj) ∈ TpM , we have,

L(xj) = L1
jx1 + L2

jx2 , j = 1, 2

=
2∑
i=1

Lijxi . (5.8)

The numbers Lij, 1 ≤ i, j ≤ 2, are called the components of L with respect to
the coordinate basis {x1,x2}. The 2×2 matrix [Lij] is the matrix representing
the linear map L with respect to the basis {x1,x2}.

EXERCISE 5.3. Let X ∈ TpM and let Y = L(X). In terms of components,
X =

∑
j X

jxj and Y =
∑

i Y
ixi. Show that

Y i =
∑
j

LijX
j , i = 1, 2 ,

which in turn implies the matrix equation,[
Y 1

Y 2

]
=
[
Lij
] [ X1

X2

]
.

This is the Weingarten map expressed as a matrix equation.

Introduce the unit normal field along W = x(U) with respect to the patch
x : U →M ,

n̂ =
x1 × x2

|x1 × x2|
, n̂ = n̂(u1, u2) ,

n = n̂ ◦ x−1 : W → R .

Then by Exercise 5.2,

L(xj) = −∇xj
n = − ∂n̂

∂uj
.
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Setting nj = ∂n̂
∂uj

and using (5.8), we obtain,

nj = −L(xj)

nj = −
∑
i

Lijxi , j = 1, 2 . (5.9)

These are known as the Weingarten equations. They can be used to compute
the components of the Weingarten map. However, in practice it turns out
to be more useful to have a formula for computing the components of the
second fundamental form.

Components of L: The components of L with respect to {x1,x2} are defined
as,

Lij = L(xi,xj) , 1 ≤ i, j ≤ 2 . (5.10)

Using bilinearity, we sse that the components completely determine L,

L(X, Y ) = L(
∑
i

X ixi,
∑
j

Y jxj)

=
∑
i,j

X iY jL(xi,xj)

=
∑
i,j

LijX
iY j . (5.11)

The following proposition provides a very useful formula for computing
the Lij’s.

Proposition 5.8. The components Lij of L are given by,

Lij = 〈n̂,xij〉 ,

where xij =
∂2x

∂uj∂ui
.

Remark: Henceforth we no longer distinguish between n and n̂, i.e., lets agree
to drop the “ ˆ ”, then,

Lij = 〈n,xij〉 , (5.12)
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Proof.

Along x(U) we have, 〈n, ∂x
∂uj
〉 = 0, and hence,

∂

∂ui
〈n, ∂x

∂uj
〉 = 0

〈 ∂n
∂ui

,
∂x

∂uj
〉+ 〈n, ∂2x

∂ui∂uj
〉 = 0

〈 ∂n
∂ui

,
∂x

∂uj
〉 = −〈n, ∂2x

∂ui∂uj
〉 = −〈n, ∂2x

∂uj∂ui
〉 ,

or, using shorthand notation,

〈ni,xj〉 = −〈n,xij〉 .

But,

Lij = L(xi,xj) = 〈L(xi),xj〉
= −〈ni,xj〉 ,

and hence Lij = 〈n,xij〉.
Observe,

Lij = 〈n,xij〉
= 〈n,xji〉 (mixed partials equal!)

Lij = Lji , 1 ≤ i, j ≤ 2 . (5.13)

In other words, L(xi,xj) = L(xj,xi). In fact, using (5.11) and (5.13), one
sees that this holds for all tangent vectors X, Y .

Proposition 5.9. The second fundamental form L : TpM × TpM → IR is
symmetric, i.e.

L(X, Y ) = L(Y,X) ∀ X, Y ∈ TpM .
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Relationship between Lij and Lij

Lij = L(xi,xj) = L(xj,xi)

= 〈L(xj),xi〉 = 〈
∑
k

Lkjxk,xi, 〉

=
∑
k

Lkj〈xk,xi〉 ,

and hence,

Lij =
∑
k

gikL
k
j, 1 ≤ i, j ≤ 2 . (5.14)

Classical tensor jargon: Lij obtained from Lkj by “lowering the index k with
the metric”. The equation above implies the matrix equation

[Lij] = [gij][L
i
j] . (5.15)

Geometric Interpretation of the 2nd Fundamental Form

Normal Curvature. Let s → σ(s) be a unit speed curve lying in a surface
M . Let p be a point on σ, and let n be a smooth unit normal v.f. defined in
a nbd W of p. The normal curvature of σ at p, denoted κn, is defined to be
the component of the curvature vector σ′′ = T ′ along n, i.e.,

κn = normal component of the curvature vector

= 〈σ′′, n〉
= 〈T ′, n〉
= |T ′| |n| cos θ

= κ cos θ ,

where θ is the angle between the curvature vector T ′ and the surface normal
n (see figure next page). If κ 6= 0 then, recall, we can introduce the principal
normal N to σ, by the equation, T ′ = κN ; in this case θ is the angle beween
N and n.
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Remark: κn gives a measure of how much σ is bending in the direction
perpendicular to the surface; it neglects the amount of bending tangent to
the surface.

Proposition 5.10. Let M be a surface, p ∈ M . Let X ∈ TpM, |X| = 1
(i.e. X is a unit tangent vector). Let s → σ(s) be any unit speed curve in
M such that σ(0) = p and σ′(0) = X. Then

L(X,X) = normal curvature of σ at p

= κn = 〈σ′′, n〉. (5.16)

Proof. Along σ,

〈σ′(s), n ◦ σ(s)〉 = 0 , for all s

d

ds
〈σ′, n ◦ σ〉 = 0

〈σ′′, n ◦ σ〉+ 〈σ′, d
ds
n ◦ σ〉 = 0 .

At s = 0,

〈σ′′, n〉+ 〈X,∇Xn〉 = 0

〈σ′′, n〉 = −〈X,∇Xn〉
κn = 〈X,L(X)〉
κn = 〈L(X), X〉

= L(X,X).

Remark: the sign convention used in the definition of the Weingarten map
ensures that L(X,X) = +κn (rather than −κn).
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Corollary 5.11. All unit speed curves lying in a surface M which pass
through p ∈ M and have the same unit tangent vector X at p, have the
same normal curvature at p. That is, the normal curvature depends only on
the tangent direction X.

Thus it makes sense to say:

L(X,X) is the normal curvature in the direction X .

Given a unit tangent vector X ∈ TpM , there is a distinguished curve in
M , called the normal section at p in the direction X. Let,

Π = plane through p spanned by n and X.

Π cuts M in a curve σ. Parameterize σ wrt arc length, s→ σ(s), such that

σ(0) = p and
dσ

ds
(0) = X :

By definition, σ is the normal section at p in the direction X. By the previous
proposition,

L(X,X) = normal curvature of the normal section σ
= 〈σ′′, n〉 = 〈T ′, n〉
= κ cos θ ,

where θ is the angle between n and T ′. Since σ lies in Π, T ′ is tangent to Π,
and since T ′ is also perpendicular to X, it follows that T ′ is a multiple of n.
Hence, θ = 0 or π, which implies that L(X,X) = ±κ.

Thus we conclude that,

L(X,X) = signed curvature of the normal section at p in the direction X.
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Principal Curvatures.

The set of unit tangent vectors at p, X ∈ TpM , |X| = 1, forms a circle
in the tangent plane to M at p. Consider the function from this circle into
the reals,

X → normal curvature in direction X
X → L(X,X).

The principal curvatures of M at p, κ1 = κ1(p) and κ2 = κ2(p), are
defined as follows,

κ1 = the maximum normal curvature at p

= max
|X|=1

L(X,X)

κ2 = the minimum normal curvature at p

= min
|X|=1

L(X,X)

This is the geometric characterization of principal curvatures. There is
also an important algebraic characterization.

Some Linear Algebra

Let V be a vector space over the reals, and let 〈 , 〉 : V × V → IR be an
inner product on V ; hence V is an inner product space. Let L : V → V be a
linear transformation. Our main application will be to the case: V = TpM ,
〈 , 〉 = induced metric, and L = Weingarten map.

L is said to be self adjoint provided

〈L(v), w〉 = 〈v, L(w)〉 ∀ v, w ∈ V .

Remark. Let V = IRn, with the usual dot product, and let L : IRn → IRn

be a linear map. Let [Lij] = matrix representing L with respect to the
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standard basis, e1 : (1, 0, ..., 0), etc. Then L is self-adjoint if and only if [Lij]
is symmetric [Lij] = [Lj i].

Proposition 5.12. The Weingarten map L : TpM → TpM is self adjoint,
i.e.

〈L(X), Y 〉 = 〈X,L(Y )〉 ∀ X, Y ∈ TpM,

where 〈 , 〉 = 1st fundamental form.

Proof. We have,

〈L(X), Y 〉 = L(X, Y ) = L(Y,X)

= 〈L(Y ), X〉 = 〈X,L(Y )〉 .

Self adjoint linear transformations have very nice properties, as we now
discuss. For this discussion, we restrict attention to 2-dimensional vector
spaces, dimV = 2.

A vector v ∈ V, v 6= 0, is called an eigenvector of L if there is a real
number λ such that,

L(v) = λv .

λ is called an eigenvalue of L. The eigenvalues of L can be determined by
solving

det(A− λI) = 0 (5.17)

where A is a matrix representing L and I = identity matrix. The equation
(5.17) is a quadratic equation in λ, and hence has at most 2 real roots; it
may have no real roots.

Theorem 5.13 (Fundamental Theorem of Self Adjoint Operators). Let V be
a 2-dimensional inner product space. Let L : V → V be a self-adjoint linear
map. Then V admits an orthonormal basis consisting of eigenvectors of L.
That is, there exists an orthonormal basis {e1, e2} of V and real numbers
λ1, λ2, λ1 ≥ λ2 such that

L(e1) = λ1e1, L(e2) = λ2e2,

i.e., e1 and e2 are eigenvectors of L and λ1, λ2 are the corresponding eigen-
values. Moreover the eigenvalues are given by

λ1 = max
|v|=1
〈L(v), v〉

λ2 = min
|v|=1
〈L(v), v〉 .
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Proof. A proof is given in Do Carmo [1], p. 214 f.

Remark on orthogonality of eigenvectors. Let e1, e2 be eigenvectors with
eigenvalues λ1, λ2. If λ1 6= λ2, then e1 and e2 are necessarily orthogonal, as
seen by the following,

λ1〈e1, e2〉 = 〈L(e1), e2〉 = 〈e1, L(e2)〉 = λ2〈e1, e2〉 ,

⇒ (λ1 − λ2)〈e1, e2〉 = 0⇒ 〈e1, e2〉 = 0. On the other hand, if λ1 = λ2 = λ
then L(v) = λv for all v. Hence any o.n. basis is a basis of eigenvectors.

We now apply these facts to the Weingarten map,

L : TpM → TpM ,

L : TpM × TpM → IR, L(X, Y ) = 〈L(X), Y 〉 .

Since L is self adjoint, and, by definition,

κ1 = max
|X|=1

L(X,X) = max
|X|=1
〈L(X), X〉

κ2 = min
|X|=1

L(X,X) = min
|X|=1
〈L(X), X〉 ,

we obtain the following.

Theorem 5.14. The principal curvatures κ1, κ2 of M at p are the eigenvalues
of the Weingarten map L : TpM → TpM . There exists an orthonormal basis
{e1, e2} of TpM such that

L(e1) = κ1e1, L(e2) = κ2e2 ,

i.e., e1, e2 are eigenvectors of L associated with the eigenvalues κ1, κ2, re-
spectively. The eigenvectors e1 and e2 are called principal directions.

Observe that,

κ1 = κ1〈e1, e1〉 = 〈L(e1), e1〉 = L(e1, e1)

κ2 = κ2〈e2, e2〉 = 〈L(e2), e2〉 = L(e2, e2) ,

i.e., the principal curvature κ1 is the normal curvature in the principal direc-
tion e1, and similarly for κ2.
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Now, let A be the matrix associated to the Weingarten map L with respect
to the orthonormal basis {e1, e2}; thus,

L(e1) = κ1e1 + 0e2

L(e2) = 0e1 + κ2e2

which implies,

A =

[
κ1 0
0 κ2

]
.

Then,

detL = detA = κ1κ2

trL = trA = κ1 + κ2 .

Definition. The Gaussian curvature of M at p, K = K(p), and the mean
curvature of M at p, H = H(p) are defined as follows,

K = detL = κ1κ2 (5.18)

H = trL = κ1 + κ2 . (5.19)

Remarks. The Gaussian curvature is the more important of the two curva-
tures; it is what is meant by the curvature of a surface. A famous discovery
by Gauss is that it is intrinsic – in fact can be computed in terms of the gij’s
(This is not obvious!). The mean curvature (which has to do with minimal
surface theory) is not intrinsic. This can be easily seen as follows. Changing
the normal n→ −n changes the sign of the Weingarten map,

L−n = −Ln .

This in turn changes the sign of the principal curvatures, hence H = κ1 + κ2

changes sign, but K = κ1κ2 does not change sign.
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Some Examples

Example. For S2
r = sphere of radius r, compute κ1, κ2, K,H (Use outward

normal).

Geometrically: p ∈ S2
r , X ∈ TpM, |X| = 1,

L(X,X) = ± curvature of normal section in direction X

= −curvature of great circle

= −1

r
.

Therefore

κ1 = max
|X|=1

L(X,X) = −1

r
,

κ2 = min
|X|=1

L(X,X) = −1

r
,

K = κ1κ2 =
1

r2
> 0, H = κ1 + κ2 = −2

r
.

Algebraically: We need to determine the eigenvalues of Weingarten map:
L : TpM → TpM . We showed previously,

L = −1

r
id, i.e.,

L(X) = −1

r
X for all X ∈ TpM.
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Thus, with respect to any orthonormal basis {e1, e2} of TpM ,

L(ei) = −1

r
ei i = 1, 2.

Therefore, κ1 = κ2 = −1

r
, K =

1

r2
, H = −2

r
.

Example. Let M be the cylinder of radius a: x2 + y2 = a2. Compute
κ1, κ2, K,H. (Use the inward pointing normal.)

Geometrically:

L(X1, X1) = ± curvature of normal section in direction X1

= + curvature of circle of radius a

=
1

a
,

L(X2, X2) = ± curvature of normal section in direction X2

= curvature of line

= 0 .
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In general, for X 6= X1, X2,

L(X,X) = curvature of ellipse through p .

The curvature is between 0 and 1
a
, and thus,

0 ≤ L(X,X) ≤ 1

a
.

We conclude that,

κ1 = max
|X|=1

L(X,X) = L(X1, X1) =
1

a
,

κ2 = min
|X|=1

L(X,X) = L(X2, X2) = 0 .

Thus, K = 0 (cylinder is flat!) and H =
1

a
.

Algebraically: Determine the eigenvalues of the Weingarten map. By a
rotation and translation we may take p to be the point p = (a, 0, 0). Let
e1, e2 ∈ TpM be the tangent vectors e1 = (0, 1, 0) and e2 = (0, 0, 1).

To compute L(e1), consider the circle,

σ(s) = (a cos(
s

a
), a sin(

s

a
), 0)

Note that σ(0) = p and σ′(0) = e1. Thus,

L(e1) = −∇e1n

= − d

ds
n(σ(s))

∣∣∣∣
s=0
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But,

n(σ(s)) = − σ(s)

|σ(s)|
= −σ(s)

a

= −
(

cos
(s
a

)
, sin

(s
a

)
, 0
)

Therefore,

L(e1) =
d

ds

(
cos
(s
a

)
, sin

(s
a

)
, 0
)
|s=0

=
1

a

(
− sin

(s
a

)
, cos

(s
a

)
, 0
)
|s=0

=
1

a
(0, 1, 0)

L(e1) =
1

a
e1

Thus, e1 is an eigenvector with eigenvalue 1
a
. Similarly (exercise!),

L(e2) = 0 = 0 · e2

i.e., e2 is an eigenvector with eigenvalue 0. (Note; e2 is tangent to a vertical
line in the surface, along which n is constant.)

We conclude that, κ1 =
1

a
, κ2 = 0, K = 0, H =

1

a
.

Example. Consider the saddle surface, M : z = y2 − x2, Compute κ1, κ2,
K, H at p = (0, 0, 0).
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L(e1, e1) = ± curvature of normal section in direction of e1

= + curvature of z = y2

The curvature is given by,

κ =

∣∣∣∣d2z

dy2

∣∣∣∣[
1 +

(
dz

dy

)2
]3/2

= 2

and so, L(e1, e1) = 2. Similarly, L(e2, e2) = −2. Observe,

L(e2, e2) ≤ L(X,X) ≤ L(e1, e1)

Therefore, κ1 = 2, κ2 = −2, K = −4, and H = 0 at (0, 0, 0).

EXERCISE 5.4. For the saddle surface M above, consider the Weingarten
map L : TpM → TpM at p = (0, 0, 0). Compute L(e1) and L(e2) directly
from the definition of the Weingarten map to show,

L(e1) = 2e1 and L(e2) = −2e2 .

Hence, −2 and 2 are the eigenvalues of L, which means κ1 = 2 and κ2 = −2.

Remark. We have computed the quantities κ1, κ2, K, and H of the saddle
surface only at a single point. To compute these quantities at all points, we
will need to develop better computational tools.

Significance of the sign of Gaussian Curvature

We have,
K = detL = κ1κ2.

1. K > 0 ⇐⇒ κ1 and κ2 have the same sign ⇐⇒ the normal sections in
the principal directions e1, e2 both bend in the same direction,

K > 0 at p.
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Ex. z = ax2 + by2, a, b have the same sign (elliptic paraboloid). At
p = (0, 0, 0), K = 4ab > 0.

2. K < 0 ⇐⇒ κ1 and κ2 have opposite signs ⇐⇒ normal sections in
principle directions e1 and e2 bend in opposite directions,

K < 0 at p.

Ex. z = ax2 + by2, a, b have opposite sign (hyperbolic paraboloid). At
p = (0, 0, 0), K = 4ab < 0.

Thus, roughly speaking,

K > 0 at p⇒ surface is “bowl-shaped” near p

K < 0 at p⇒ surface is “saddle-shaped” near p

This rough observation can be made more precise, as we now show. Let
M be a surface, p ∈M . Let e1, e2 be principal directions at p. Choose e1, e2

so that {e1, e2, n} is a positively oriented orthonornal basis.
By a translation and rotation of the surface, we can assume, (see the

figure),

(1) p = (0, 0, 0)

(2) e1 = (1, 0, 0), e2 = (0, 1, 0), n = (0, 0, 1) at p

(3) Near p = (0, 0, 0), the surface can be described by an equation of form,
z = f(x, y), where f : U ⊂ IR2 → IR is smooth and f(0, 0) = 0.
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Proposition 5.15.

z =
1

2
κ1x

2 +
1

2
κ2y

2 + higher order terms

Proof. Consider the Taylor series about (0, 0) for functions of two variables,

z = f(0, 0) + fx(0, 0)x+ fy(0, 0)y +
1

2
fxx(0, 0)x2 + fxy(0, 0)xy +

1

2
fyy(0, 0)y2

+ higher order terms .

We must compute 1st and 2nd order partial derivatives of f at (0, 0). Intro-
duce the Monge patch, x(u, v) = (u, v, f(u, v)), i.e,

x :
x = u
y = v
z = f(u, v)

We have,

x1 = xu = (1, 0, fu) ,

x2 = xv = (0, 1, fv) ,

n =
x1 × x2

|x1 × x2|
=

xu × xv
|xu × xv|

=
(−fu,−fv, 1)√

1 + f 2
u + f 2

v

At (u, v) = (0, 0): n = (0, 0, 1) ⇒ fu = fv = 0, ⇒ x1 = (1, 0, 0) = e1 and
x2 = (0, 1, 0) = e2.

Recall, the components of the 2nd fundamental form Lij = L(xi,xj) may
be computed from the formula,

Lij = 〈n,xij〉, xij =
∂2x

∂uj∂ui
.

In particular, L11 = 〈n,x11〉, where x11 = xuu = (0, 0, fuu).

At (u, v) = (0, 0): L11 = 〈n,x11〉 = (0, 0, 1) · (0, 0, fuu(0, 0)) = fuu(0, 0) .
Therefore,

fuu(0, 0) = L11 = L(x1,x1) = L(e1, e1) = κ1 .
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Similarly,

fvv(0, 0) = L(e2, e2) = κ2

fuv(0, 0) = L(e1, e2) = 〈L(e1), e2〉 = λ1(e1, e2) = 0.
.

Thus, setting x = u, y = v, we have shown,

fx(0, 0) = fy(0, 0) = 0

fxx(0, 0) = κ1, fyy(0, 0) = κ2, fxy(0, 0) = 0,

which, substituting into the Taylor expansion, implies,

z =
1

2
κ1x

2 +
1

2
κ2y

2 + higher order terms.

Computational Formula for Gaussian Curvature.

We now derive a useful expression for computing the Guassian curvature
of more general surfaces.

We have,
K = Gaussian curvature

= detL = det[Lij].

From equation (5.15) on p. 101,

[Lij] = [gij][L
i
j],

det[Lij] = det[gij] det[Lij]

= det[gij] ·K

Hence,

K =
det[Lij]

det[gij]
, gij = 〈xi,xj〉, Lij = 〈n,xij〉 .

Further,

det[Lij] = det

[
L11 L12

L21 L22

]
= L11L22 − L2

12 ,
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since L12 = L21, and similarly,

det[gij] = g11, g22 − g2
12 .

Thus,

K =
L11L22 − L2

12

g11g22 − g2
12

. (5.20)

Example. Compute the Gaussian curvature of the saddle surface z = y2−x2.

Introduce the Monge patch, x(u, v) = (u, v, v2 − u2).

Compute the metric components gij:

xu = (1, 0,−2u), xv = (0, 1, 2v) ,

guu = 〈xu,xu〉 = (1, 0,−2u) · (1, 0,−2u)

= 1 + 4u2.

Similarly,

gvv = 〈xv,xv〉 = 1 + 4v2 ,

guv = 〈xu,xv〉 = −4uv .

Thus,
det[gij] = guugvv − g2

uv

= (1 + 4u2)(1 + 4v2)− 16u2v2

= 1 + 4u2 + 4v2.

Compute the second fundamental form components Lij:

We use, Lij = 〈n,xij〉. We have,

n =
xu × xv
|xu × xv|

=
(2u,−2v, 1)√
1 + 4u2 + 4v2

,

and,
xuu = (0, 0,−2), xvv = (0, 0, 2), xuv = (0, 0, 0) .
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Then,

Luu = 〈n,xuu〉 =
−2√

1 + 4u2 + 4v2

Lvv = 〈n,xvv〉 =
2√

1 + 4u2 + 4v2

Luv = 〈n,xuv〉 = 0.

Thus,

det[Lij] = LuuLvv − L2
uv =

−4

1 + 4u2 + 4v2
,

and therefore,

K(u, v) =
det[Lij]

det[gij]
=

−4

1 + 4u2 + 4v2
· 1

1 + 4u2 + 4v2

K(u, v) =
−4

(1 + 4u2 + 4v2)2

.

Hence the saddle surface z = y2 − x2 has Gaussian curvature function,

K(x, y) =
−4

(1 + 4x2 + 4y2)2
.

Observe that K < 0 everywhere, and K =
−4

(1 + 4r2)2
∼ 1

r4
, where r =√

x2 + y2 is the distance from the z-axis. As r →∞, K → 0 rapidly.

EXERCISE 5.5. Consider the surface M which is the graph of z = f(x, y).
Show that the Gaussian curvature K = K(x, y) is given by,

K(x, y) =
fxxfyy − f 2

xy

(1 + f 2
x + f 2

y )2

where fx =
∂f

∂x
, fxx =

∂2f

∂x2
, etc.
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EXERCISE 5.6. Let M be the torus of large radius R and small radius r
described in Exercise 3.3. Using the parameterization,

x(t, θ) = ((R + r cos t) cos θ, (R + r cos t) sin θ, r sin t)

show that the Gaussian curvature K = K(t, θ) is given by,

K =
cos t

r(R + r cos t)
.

Where on the torus is the Gaussian curvature negative? Where is it positive?
(See figure.)

EXERCISE 5.7. Derive the following expression for the mean curvature H,

H =
g11L22 − 2g12L12 + g22L11

g11g22 − g2
12

.

The principal curvatures κ1 and κ2 at a point p ∈ M are the normal
curvatures in the principal directions e1 and e2. The normal curvature in
any direction X is determined by κ1 and κ2 as follows.

If X ∈ TpM , |X| = 1 then X can be expressed as (see the figure),

X = cos θe1 + sin θe2 .
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Proposition 5.16 (Euler’s formula). The normal curvature in the direction
X is given by,

L(X,X) = κ1 cos2 θ + κ2 sin2 θ ,

where κ1, κ2 are the principal curvatures, and θ is the angle between X and
the principal direction e1.

Proof. Use the shorthand, c = cos θ, s = sin θ. Then X = ce1 + se2, and

L(X) = L(ce1 + se2)

= cL(e1) + sL(e2)

= cκ1e1 + sκ2e2.

Therefore,
L(X,X) = 〈L(X), X〉

= 〈cκ1e1 + sκ2e2, ce1 + se2〉

= c2κ1 + s2κ2.

EXERCISE 5.8. Assuming κ1 > κ2, determine where (i.e., for which values
of θ) the function,

κ(θ) = κ1 cos2 θ + κ2 sin2 θ, 0 ≤ θ ≤ 2π

achieves its maximum and minimum. The answer shows that the principal
directions e1, e2 are unique, up to sign, in this case.

Gauss Theorema Egregium

The Weingarten map,
L(X) = −∇Xn

is an extrinsically defined object - it involves the normal to the surface. There
is no reason to suspect that the determinant of L, the Gaussian curvature,
is intrinsic, i.e. can be computed from measurements taken in the surface.
But Gauss carried out some courageous computations and made the extraor-
dinary discovery that, in fact, the Gaussian curvature K is intrinsic - i.e.,
can be computed from the gij’s. This is the most important result in the
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subject - albeit not the prettiest! If this result were not true then the subject
of differential geometry, as we know it, would not exist.

We now embark on the same path - courageously carrying out the same
computation.
Some notation. Introduce the “inverse” metric components, gij, 1 ≤ i, j ≤
2, by

[gij] = [gij]
−1 ,

i.e. gij is the i-jth entry of the inverse of the matrix [gij]. Using the formula,[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
,

we can express gij explicitly in terms of the gij, e.g.,

g11 =
g22

g11g22 − g2
12

, etc.

Note, in an orthogonal coordinate system, i.e., a proper patch in which g12 =
〈x1,x2〉 = 0, we have simply,

g11 =
1

g11

, g22 =
1

g22

, g12 = g21 = 0 .

By the definition of an iinverse matrix, we have

[gij][g
ij] = I

where I = identity matrix = [δi
j]. Here δi

j is the Kronecker delta (cf.,
equation (2.11) in Chapter 2),

δi
j =

{
0 , i 6= j
1, i = j ,

and so,
[gij][g

ij] = [δi
j] .

The product formula for matrices then implies,∑
k

gikg
kj = δi

j
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or, by the Einstein summation convention,

gikg
kj = δji .

Now, let M be a surface and x : U ⊂ IR2 → M ⊂ IR3 be any proper
patch in M . Then,

x = x(u1, u2) = (x(u1, u2), y(u1, u2), z(u1, u2)) ,

xi =
∂x

∂ui
=

(
∂x

∂ui
,
∂y

∂ui
,
∂z

∂ui

)
,

xij =
∂2x

∂uj∂ui
=

(
∂2x

∂uj∂ui
,
∂2y

∂uj∂ui
,
∂2z

∂uj∂ui

)
.

We seek useful expressions for these second derivatives. At any point
p ∈ x(U), {x1,x2, n} form a basis for TpIR

3. Since at p, xij ∈ TpIR3, we can
write,

xij = Γ1
ijx1 + Γ2

ijx2 + λijn ,

xij =
2∑
`=1

Γ`ijx` + λijn .

or, making use of the Einstein summation convention,

xij = Γ`ijx` + λijn . (5.21)

We obtain expressions for λij,Γ
`
ij. Dotting (5.21) with n gives,

〈xij, n〉 = Γ`ij〈x`, n〉+ λij〈n, n〉

⇒ λij = 〈xij, n〉 = 〈n,xij〉

λij = Lij .

Dotting (5.21) with xk gives,

〈xij,xk〉 = Γ`ij〈x`,xk〉+ λij〈n,xk〉
〈xij,xk〉 = Γ`ijg`k .
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Solving for Γ`ij,

〈xij,xk〉gkm = Γ`ijg`kg
km

= Γ`ijδ
m
`

〈xij,xk〉gkm = Γmij

Thus,

Γ`ij = gk`〈xij,xk〉 . (5.22)

Claim. The quantity 〈xij,xk〉 is given by,

〈xij,xk〉 =
1

2

(
∂gik
∂uj

+
∂gjk
∂ui
− ∂gij
∂uk

)

=
1

2
(gik,j + gjk,i − gij,k)

.

Proof of the claim. We use Gauss’ trick of permuting indices.

gij,k =
∂

∂uk
gij =

∂

∂uk
〈xi,xj〉

= 〈∂xi
∂uk

,xj〉+ 〈xi,
∂xj
∂uk
〉

(1) gij,k = 〈xik,xj〉+ 〈xi,xjk〉

(j ↔ k) (2) gik,j = 〈xij,xk〉+ 〈xi,xkj〉

(i↔ j) (3) gjk,i = 〈xji,xk〉+ 〈xj,xki〉
Then (2) + (3)− (1) gives:

gik,j + gjk,i − gij,k = 2〈xij,xk〉 .

Thus we arrive at,

Γ`ij =
1

2
gk`(gik,j + gjk,i − gij,k) . (5.23)

Remark. These are known as the Christoffel symbols.
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Summarizing, we have,

xij = Γ`ijx` + Lijn, (Gauss Formulas) (5.24)

where Lij are the components of the 2nd fundamental form and Γ`ij are the
Christoffel symbols as given above.

Consider now the Gauss formulas together with the Weingarten equa-
tions (5.9),

nj = −Lijxi .
We remark that the vector fields x1,x2, n, play a role in surface theory

roughly analogous to the Frenet frame for curves. The Gauss formulas and
Weingarten equations for the partial derivatives of x1,x2, n then play a role
roughly analogous to the Frenet formulas.

Now, Gauss takes things one step further and computes the 3rd deriva-

tives, xijk =
∂

∂uk
xij:

xijk =
∂

∂uk
(Γ`ijx` + Lijn) =

∂

∂uk
Γ`ijx` +

∂

∂uk
Lijn

= Γ`ij,kx` + Γ`ijx`k + Lij,kn+ Lijnk

= Γ`ij,kx` + Γ`ij(Γ
m
`kxm + L`kn) + Lij,kn+ Lij(−L`kx`)

= Γ`ij,kx` + Γ`ijΓ
m
`kxm︸ ︷︷ ︸

Γm
ijΓ`

mkx`

+Γ`ijL`kn+ Lij,kn− LijL`kx` .

Thus,
xijk = (Γ`ij,k + ΓmijΓ

`
mk − LijL`k)x` + (Lij,k + Γ`ijL`k)n ,

and interchanging indices (j ↔ k),

xikj = (Γ`ik,j + ΓmikΓ
`
mj − LikL`j)x` + (Lik,j + Γ`ikL`j)n .

Now, xikj = xijk implies

Γ`ik,j + ΓmikΓ
`
mj − LikL`j = Γ`ij,k + ΓmijΓ

`
mk − LijL`k =

or,
Γ`ik,j − Γ`ij,k + ΓmikΓ

`
mj − ΓmijΓ

`
mk︸ ︷︷ ︸

R`
ijk

= LikL
`
j − LijL`k .
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These are the components of the famous Riemann curvature tensor. Note
that thes componets are intrinsic, i.e. they can be computed from the gij’s
(they involve 1st and 2nd derivatives of the gij’s).

We arrive at,

R`
ijk = LikL

`
j − LijL`k The Gauss Equations . (5.25)

Theorem 5.17 (Gauss’ Theorem Egregium). The Gaussian curvature of a
surface is intrinsic, i.e. can be computed in terms of the gij’s.

Proof. This follows from the Gauss equations. Multiply both sides by gm`,

gm`R
`
ijk = Likgm`L

`
j − Lijgm`L`k.

But recall (see p. 13),
Lmj = gm`L

`
j .

Hence,
gm`R

`
ijk = LikLmj − LijLmk .

Setting i = k = 1, m = j = 2 we obtain,

g2`R
`
121 = L11L22 − L12L21

= det[Lij] .

Thus,

K =
det[Lij]

det[gij]

K =
g2`R

`
121

g
, g = det[gij]

Comment. Gauss’ Theorema Egregium can be interpreted in a slightly
different way in terms of isometries. We discuss this point here very briefly
and very informally.

Let M and N be two surfaces. A one-to-one, onto map f : M → N that
preserves lengths of curves is called an isometry. (This may be understood
at the level of tangent vectors: f takes curves to curves, and hence velocity
vectors to velocity vectors. f is an isometry iff it preserves the length of
velocity vectors iff it preserves the induced metrics gM and gN .) For example,
the process of wrapping a piece of paper into a cylinder is an isometry.
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Theorem 5.18. Gaussian curvature is a bending invariant, i.e. is invariant
under isometries, by which we mean: if f : M → N is an isometry then

KN(f(p)) = KM(p) ,

i.e., the Gaussian curvature is the same at corresponding points.

Proof. f preserves lengths and angles. Hence, in appropriate coordinate
systems, the metric components for M and N are the same. By the formula
forK above, the Gaussian curvature will be the same at corresponding points.

Application 1. The cylinder has Gaussian curvature K = 0 (because a
plane has zero Gaussian curvature).

Application 2. No piece of a sphere can be fllattened into a piece of a plane

without distorting distances (because Kplane = 0, Ksphere =
1

r2
, r =radius).

Theorem (Riemann). Let M be a surface with vanishing Gaussian cur-
vature, K = 0. Then each p ∈ M has a neighborhood which is isometric to
an open set in the Euclidean plane.

EXERCISE 5.9. Although The Gaussian curvature K is a “bending invari-
ant”, show that the principal curvatures κ1, κ2 are not. I.e., show that the
principle curvatures are not in general invariant under an isometry. (Hint:
Consider the bending of a rectangle into a cylinder).

Remark. It can be shown that in an orthogonal coordinate system,

gij = 〈xi,xj〉 = 0 ,

the formula for the Gaussian curvature simplifies to the following

K = − 1

2
√
g

[
∂

∂u1

(
1
√
g

∂g22

∂u1

)
+

∂

∂u2

(
1
√
g

∂g11

∂u2

)]
(5.26)
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Additional Chapter 5 Exercises

1. Compute the Gaussian curvature K of the helicoid,

x(u, v) = (u cos v, u sin v, bv) ,

(where b is a positive constant). Show that,

K = − b2

(b2 + u2)2

2. Let u → σ(u), a < u < b, be a regular curve in space, without self-
intersections, and let p be a fixed point in space not on σ. The param-
eterized surface (called a generalized cone),

x(u, v) = p+ vσ(u), a < u < b, 0 < v,

describes a family of rays emanating from the point p.

(a) Show that x is regular if and only if σ(u) × σ′(u) 6= 0, for all
a < u < b.

(b) Assuming regularity, show by a computation that the surface is
flat, i.e., has vanishing Gaussian curvature.

3. Let x = x(u1, u2) be a proper patch in a surface M , and let n =
n(u1, u2), n = x1 × x2/|x1 × x2|, be the associated unit normal to
M . Show that n1 × n2 = K

√
g n, where nj = ∂n

∂uj
and K is Gaussian

curvature.

4. Suppose that in a proper patch x : U → M , x = x(u, v), the Wein-
garten map satisfies L = fI, where f = f(u, v) and I = the identity
map. Prove that f is constant. (Hint: Show that ∂f

∂u
= ∂f

∂v
= 0. To

show this, consider L applied to the coordinate vectors.)



Chapter 6

Geodesics and the
Gauss-Bonnet Theorem

Geodesics in Surfaces.

We want to generalize the idea of a straight line in Euclidean space to
surfaces. These generalized lines will be called geodesics. Before defining
geodesics, let us first understand some properties of straight lines in R3.

(1) Straight lines are curves of zero acceleration. Consider a point
p ∈ R3 and a vector N at p. We can generate the straight line σ at p in
the direction N by defining σ(t) = p+ tN . See the figure below. Then
we have

dσ

dt
= N and

d2σ

dt2
= 0.

Therefore straight lines are curves with zero acceleration.

 

133
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(2) Straight lines are curves of zero curvature. Again let σ(t) = p+
tN be a straight line at p in the direction N . Then σ is a regular curve
and so from Chapter 2, we know that it’s unit tangent and curvature
are, respectively

T (t) =
σ′(t)

|σ′(t)|
=

N

|N |
and κ(t) = |T ′(t)| = 0.

Therefore straight lines are curves with zero curvature.

(3) The shortest distance between two points is a straight line.
Let p and q be two points in R3. What is the shortest path between p
and q? It shouldn’t be hard to convince yourself that the shortest path
is a straight line between the two points.

 

The third property readily generalizes to curves on surfaces. We can
imagine two points p and q on a surface and ask: what is the shortest path
on the surface between p and q?
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We can use this idea to motivate the definition of a geodesic. Let’s con-
sider the sphere. Consider two points p and q on the sphere.

 

It shouldn’t be hard to convince yourself that the shortest path between
the points p and q on a sphere is a great circle between them. By rotating
coordinates, we can assume that p and q lie on the equator:

x2 + y2 = 1 and z = 0.

We can parameterize the equator by

σ(t) = (cos t, sin t, 0).

Differentiating σ twice yields

σ′′(t) = (− cos t,− sin t, 0).

We find σ′′(t) = −σ(t). But σ(t) is the radial vector! Hence σ′′(t) is orthog-
onal to the sphere S2. This is the desired definition for a geodesic.

Definition. Let M be a surface. Then a geodesic in M is a curve σ(t) such
that σ′′ is orthogonal to M . That is σ′′(t) ⊥M for all t in the domain of σ.

Consider a plane M in R3 and a straight line σ(t) = p+ tN in the plane.
Since σ′′(t) = 0, we see that we trivially satisfy σ′′(t) ⊥ M . The fact that
σ′′(t) = 0 shows that straight lines in Euclidean space have zero acceleration.
We seek a way to generalize this idea to geodesics. However let’s recognize
that demanding σ′′ = 0 will not work because great circles on spheres have
nonzero acceleration but are geodesics!
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Covariant Acceleration.

Let M be a surface and consider a tangent vector X ∈ TpR3 at a point
p ∈M . We can decompose X into the sum of two vectors

X = XT +X⊥

where XT ∈ TpM and X⊥ ∈ TpR3 is orthogonal to M . They are called the
tangential and perpendicular components of X, respectively.

 

We define the operation tan : TpR3 → TpM by

tan(X) = XT .

Now let σ(t) be a curve in M . Note that σ′′(t) ∈ Tσ(t)R3. The covariant
acceleration of σ is a vector field along σ, denoted by D

dt

(
σ′(t)

)
, and it’s given

by
D

dt

(
dσ

dt

)
= tan

(
d2σ

dt2

)
.

Hence the covariant acceleration of σ is just the tangential component of the
ordinary second derivative of σ.

Proposition 6.1. Let M be a surface. σ(t) is a geodesic if and only if its
covariant acceleration vanishes; i.e. if and only if D

dt
σ′(t) = 0.
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Proof. Suppose σ is a geodesic. Then σ′′(t) ⊥M for all t. Therefore σ′′(t) is
not tangent to M . Hence tan

(
σ′′(t)

)
= 0. Hence D

dt

(
σ′(t)

)
= 0. Conversely,

if D
dt

(
σ′(t)

)
= 0, then tan

(
σ′′(t)

)
= 0 which implies σ′′(t) ⊥M for all t.

Because of Proposition 6.1, we call D
dt
σ′(t) = 0 the geodesic equation.

Solving this equation tells us how to find geodesics in a surface.

Geodesics have constant speeds.

Proposition 6.2. Let M be a surface and σ(t) a geodesic in M . Then |σ′(t)|
is constant for all t.

Proof. By definition |σ′(t)| =
√
〈σ′(t), σ′(t)〉. Hence it suffices to show

〈, σ′(t), σ′(t)〉 is constant. By the product rule, we have

d

dt
〈σ′(t), σ′(t)〉 = 〈σ′′(t), σ′(t)〉+ 〈σ′(t), σ′′(t)〉

= 2〈σ′′(t), σ′(t)〉
= 0.

The last fine follows because σ′′(t) ⊥ M and σ′(t) is tangential to M . Thus
|σ′(t)| = c for some constant c.

Let σ(t) be a geodesic in a surface M . By the previous proposition, we
know that |σ′(t)| = c for some constant c. Either c = 0 or c > 0.

(a) c = 0. Then for all t we have |σ′(t)| = 0 and so σ′(t) = 0. Hence there
exists a p ∈ M such that σ(t) = p for all t. In this case we say that σ
is a trivial geodesic.

(b) c > 0. In this case σ is a regular curve. Therefore we can reparameterize
σ in terms of its arc length s(t) =

∫
|σ′(t)|dt = ct. We have

dσ

dt
=
dσ

ds

ds

dt
= c

dσ

ds
.

Since c is a constant, we have

d2σ

dt2
= c2d

2σ

ds2
.

This gives us the following proposition.



CHAPTER 6. GEODESICS AND GAUSS-BONNET 138

Proposition 6.3. A unit speed curve σ(s) in M is a geodesic if and only if
the curuvature vector T ′ = σ′′(s) ⊥M for all s.

A way to find geodesics.

Proposition 6.4. Suppose Π is a plane that intersects a surface M orthog-
onally at every point of intersection. Let s → σ(s) denote the curve of
intersection. Then σ is a geodesic.

Proof. That the plane Π meets M orthogonally at each point means that
the at each point of σ the unit normal n to M is tangent to Π. Since σ
lies in the plane Π, the unit tangent T = σ′ is tangent to Π. The curvature
vector T ′ = σ′′ is tangent to Π, as well, as can be seen as follows. Let ν be
a unit normal to Π. Then ν is a constant vector field because Π is a plane.
Moreover, 〈ν, σ′〉 = 0. Hence,

0 =
d

ds
〈ν, σ′〉 = 〈ν ′, σ′〉+ 〈ν, σ′′〉 = 〈ν, σ′′〉.

which implies that T ′ = σ′′ is tangent to Π. Since T ′ is tangent to Π and
orthogonal to T , it must be proportional to n at each point of σ. It now
follows from Proposition 6.3 that σ os a geodesic.

 

nn

Example. Planes that intersect a sphere through the origin produce great
circles. From the Proposition 6.4, we know that these great circles are
geodesics.
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Example. Let’s consider a curve y(z) in the y − z plane which is rotated
about the z-axis. This will generate a surface of revolution. A plane which
passes through the origin and is parallel to the z-axis will intersect the surface
orthogonally. Therefore the intersection will be a geodesic. These geodesics
are called meridians.

 

Geodesics and Curvature.

Our goal in this section is to understand the relationship between geodesics
and the curvature of curves we discussed in chapter 2.

Let σ(s) be a regular curve on a surface M with a unit speed parame-
terization. Recall that the unit tangent to σ is the vector field T (s) along σ
defined by

T (s) = σ′(s).

Let n be a unit normal to M . When n is restricted to σ, we have a vector
field n(s) along σ. We define the vector field S(s) = T (s)× n(s) along σ.
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T 0

{S, T, n} is an orthonormal basis of vectors along σ. Therefore given any
X ∈ TpR3 for some p on the image of σ, we can decompose X in terms of
the basis vectors:

X = 〈X,T 〉T + 〈X,S〉S + 〈X,n〉n

Consider X = σ′′, then decomposing σ′′ gives

σ′′ = 〈σ′′, T 〉T + 〈σ′′, S〉S + 〈σ′′, n〉n

Then since 〈σ′′, T 〉 = 0 we have,

σ′′ = 〈σ′′, S〉S + 〈σ′′, n〉n

We define the geodesic curvature as κg = 〈σ′′, S〉 and recall that κn = 〈σ′′, n〉
is the normal curvature of σ. Thus, the curvature vector may be expressed
as,

σ′′ = κgS + κnn .

Proposition 6.5. Let σ be a regular curve in M . Then σ is a geodesic if
and only if its geodesic curvature vanishes (i.e. κg = 0).

Proof. Since σ is a regular curve, we can write its second derivative as
σ′′ = κgS + κnn. If σ is a geodesic, then σ′′(s) ⊥ M for all s. That is
σ′′ is proportional to n, and so κg = 0. Conversely, if κg = 0, then σ′′ is
proportional to n.
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Existence of Geodesics.

In this section we will establish the existence of geodesics in a surface.
This will be accomplished by the fundamental existence and uniqueness the-
orem of ordinary differential equations. In order to use this theorem, we
need to express the geodesic equation, D

dt
dσ
dt

= 0, in a more tangible form
with coordinates.

Let σ(t) be a curve in a surface M . Recall that the covariant acceleration
of σ is given by

D

dt

dσ

dt
= tan

(
d2σ

dt2

)
and Proposition 6.1 showed us that σ is a geodesic if and only if D

Dt
σ′ = 0.

Let x : U ⊂ R2 → M ⊂ R3 be a proper coordinate patch. The coordinates
for U will be u1 and u2. In terms of these coordinates, we can write a curve
σ(t) as

σ(t) = x
(
u1(t), u2(t)

)
.

Then in terms of these coordinates, we have

d2σ

dt2
=

d

dt

(
dσ

dt

)
=

d

dt

(
d

dt
x
(
u1(t), u2(t)

))
=

d

dt

(
∂x

∂u1

du1

dt
+
∂x

∂u2

du2

dt

)
.

Recall that we use the notation xi = ∂x
∂ui

for i = 1, 2. Therefore

d2σ

dt2
=

d

dt

(
2∑
i=1

dui

dt
xi

)

=
2∑
i=1

(
d2ui

dt2
xi +

dui

dt

dxi
dt

)
.

Plugging in

dxi
dt

=
∂xi
∂u1

du1

dt
+
∂xi
∂u2

du2

dt
= xi1

du1

dt
+ xi2

du2

dt
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we get

d2σ

dt2
=

2∑
i=1

(
d2ui

dt2
xi +

dui

dt

2∑
j=1

duj

dt
xij

)
.

Recall from the previous chapter that we derived the following expression for
xij:

xij =
2∑

k=1

Γkijxk + Lijn

where n is a unit normal to M . Therefore

d2σ

dt2
=

2∑
i=1

(
d2ui

dt2
xi +

dui

dt

2∑
j=1

duj

dt

[
2∑

k=1

Γkijxk + Lijn

])
.

Note in the above equation, the only part that is not tangent to M is Lijn.
Therefore the covariant acceleration of σ is:

D

dt

dσ

dt
= tan

(
d2σ

dt2

)
=

2∑
i=1

d2ui

dt2
xi +

2∑
i,j,k=1

dui

dt

duj

dt
Γkijxk.

By relabeling the index ‘i’ to a ‘k’ in the first term, we obtain

D

dt

dσ

dt
= tan

(
d2σ

dt2

)
=

2∑
k=1

(
d2uk

dt2
+

2∑
i,j=1

dui

dt

duj

dt
Γkij

)
xk.

Thus the geodesic equation, D
dt

(σ′) = 0, is equivalent to

d2uk

dt2
+

2∑
i,j=1

Γkij
dui

dt

duj

dt
= 0 for each k = 1, 2.

This is a system of differential equations in the four unknowns du1

dt
, du2

dt
, d2u1

dt2
,

and d2u2

dt2
. Since each Γkij is a smooth function on the coordinate patch, the

fundamental existence and uniqueness theorem of ordinary differential equa-
tions says that given initial conditions on u1, u2, du1

dt
, and du2

dt
, the unknowns

can be solved and the solution is unique for some maximal time interval.
Thus we have the following theorem.
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Theorem 6.6. Given any p ∈M and any X ∈ TpM , there exists a geodesic
σ(t) satisfying σ(0) = p and σ′(0) = X. There is a maximal time interval
on which the geodesic is unique.

The vector X ∈ TpM in the above theorem was arbitrary. By allowing
X to vary, we can consider geodesics emanating from p with various initial
velocities. Given a radius r > 0, we define Cr(p), called the geodesic circle
of radius r centered at p, to be the set of points q ∈ M such that there is a
geodesic σ starting at p and ending at q which has length r. The following
proposition is intuitively believable, but deceptively difficult to prove. It’s
normally proved in more advance differential geometry courses.

Proposition 6.7. Given any p ∈M there exists a (small) radius r > 0 such
that Cr(p) can be parameterized by a smooth closed curve.

 

Example. For a plane Π in R3, geodesic circles are just usual circles.
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Example. Consider the sphere S2 and a geodesic circle Cr(p) centered about
p ∈ S2. By rotating coordinates, we can assume that p is at the north pole.
Then Cr(p) corresponds to a circle of constant latitude.

 

Gauss-Bonnet Theorem.

The Gauss-Bonnet Theorem is a beautiful connection between the geom-
etry and topology of surfaces. The geometry part has to deal with curvature
which we have discussed in great detail already. So let’s acquaint ourselves
with the topology part. This field of study goes under the name algebraic
topology and is normally taught in graduate courses. For our purposes we
only want to understand the bare minimum, so we can quickly see how cur-
vature plays a role via the Gauss-Bonnet theorem. Therefore we will not
prove every theorem about topology stated in this section, but we will use
lots of examples to portray the theorems.

Topology of Surfaces

We will say two surfaces M and N are topologically equivalent or are of
the same topological type if M and N are diffeomorphic. We normally write
M ≈ N to denote this. For example the surface of a sphere, potato, and
dumbell are all of the same topological type because they are all diffeomorphic
to each other. The surface of a doughnut is topologically equivalent to that of
a coffee cup. To see how these surfaces are diffeomorphic to each other, one
can imagine that each of these surfaces is made of play-doh. We can mold and
shift the play-doh of some surface to turn it into another surface. However
it’s impossible to mold the surface of a sphere into that of a torus without
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puncturing a hole in the surface. This ‘puncturing’ creates a discontinuity
in any type of mapping one can create from the sphere to the torus, and so
they cannot be diffeomorphic.

 

 

 

Of course using play-doh to describe surfaces is not mathematically rigor-
ous, but these ideas can be made rigorous which is what courses on algebraic
topology set out to do.
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Euler Number

It’s an astonishing fact that to determine whether two surfaces are topo-
logically equivalent (diffeomorphic) comes down to computing exactly one
number of that surface. That number is called the Euler characteristic. If
both surfaces have the same number, then they have the same topological
type. Before defining the Euler characteristic, we first have to talk about
how to triangulate surfaces.

Definition. A triangle T in M is a simple region in M bounded by 3 smooth
curve segments. (Here ‘simple’ means that T is topologically a disk.) The
curves which make up the triangle are called edges and the points where one
curve ends and another begins are called vertices. The region bounded by
the edges is called the face. A geodesic triangle is a triangle T whose edges
are geodesics. We will almost exclusively be working with geodesic triangles.

 

Definition. A triangulation of M is a decomposition of M into a finite
number of triangles T1, T2, . . . , Tn such that

(1)
⋃n
i=1 Ti = M

(2) If Ti ∩ Tj 6= ∅, then Ti ∩ Tj is either a common edge or a vertex.

It’s a fact (we will not prove) that every compact surface can be triangu-
lated.
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Theorem 6.8. Every compact surface admits a triangulation. Moreover we
can assume the edges of the triangulation are geodesics.

Example. The figure below shows a triangulation of the sphere. Note that
the edges of the triangles are great circles and hence geodesics. The triangu-
lation has the same topology type as a tetrahedron. The number of faces is
F = 4, the number of edges is E = 6, and the number of vertices is V = 4.

 

Definition. Let M be a compact surface and consider any triangulation of
M . Then the Euler characteristic of M is

χ(M) = V − E + F

where

V = number of vertices

E = number of edges

F = number of faces

The following fact (we will not prove) justifies the definition of χ(M).

Theorem 6.9. The Euler characteristic χ(M) does not depend on the par-
ticular triangulation of M .
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It can be shown (in more advance courses) that χ(M) is a topological
invariant. That is, it does not depend on the topological type of the surface.
This gives us the following theorem.

Theorem 6.10. Two surfaces M and N are topologically equivalent if and
only if χ(M) = χ(N). In other words

M ≈ N ⇐⇒ χ(M) = χ(N).

Example. Find a triangulation of the torus T 2 and convince yourself that
χ(T 2) = 0. Since the Euler characteristic of the sphere is χ(S2) = 2, the
above theorem tells us that the torus and the sphere are not diffeomorphic
(which is what we expect).

Genus and classification of compact surfaces in R3.

There is an easy way to construct surfaces with different topology. The
idea is to ‘glue’ handles onto a sphere.
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Definition. When we construct a surface M in this way with g handles,
then we say M is a surface of genus g.

There is a simple relationship between the genus and the Euler charac-
teristic.

Proposition 6.11. If M is a surface of genus g, then χ(M) = 2(1− g).

The proof follows from a formula involving the connected sum of two
surfaces: χ(M1#M2) = χ(M1) + χ(M2)− 2.

Example. The sphere S2 is a surface of genus zero. Therefore χ(S2) = 2.
This agrees with our triangulation of the sphere. The torus T 2 is a surface of
genus one. Therefore χ(T 2) = 0. Make sure this agrees with the triangulation
you found of T 2 in the previous example.

One of the triumphs of elementary differential geometry is the following
classification theorem.

Theorem 6.12 (Classification of compact surfaces). Every compact surface
in R3 is diffeomorphic to a genus g surface.

Theorem 6.13 (Gauss-Bonnet Theorem). Let M be a compact surface in
R3 with Gaussian curvature K. Then∫∫

M

KdA = 2πχ(M)

Thus the Gauss-Bonnet theorem gives us a relationship between topology
and the average curvature of a surface. Here is an interesting consequence of
these two theorems.

Corollary 6.14. Suppose M has positive Gaussian curvature everywhere.
Then M is diffeomorphic to a sphere.

Proof. By assumption we have K > 0 on the sphere which implies χ(M) > 0.
By Proposition 6.11, we know that χ(M) = 2(1−g). Since g can only take on
the values g = 0, 1, 2, . . . , we must have g = 0. By the classification theorem
of compact surfaces, it follows that M is topologically a sphere.

Our main tool we will use to prove the Gauss-Bonnet theorem is the
Angle Excess theorem.
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Theorem 6.15 (Angle Excess Theorem). Let T be a geodesic triangle with
angles A, B, and C. Then

A+B + C = π +

∫∫
T

KdS.

We will prove the angle excess theorem after we use it to prove the Gauss-
Bonnet theorem. For now we will illustrate the angle excess theorem with
some examples.

Example. Let M = R2. Then K = 0 and we have the usual theorem from
Euclidean geometry: A+B + C = π.

Example. Let M = S2
R be the sphere with radius R. Using great circles

(i.e. geodesics), we will draw three arcs which connect at 90 degree angles.
See figure

 

Then we should have A + B + C = 3
2
π. Now let’s use the angle excess

theorem to confirm this. We have∫∫
T

KdS =

∫∫
T

1

R2
dA =

1

R2

∫∫
T

dA =
1

R2

(
4πR2

8

)
=
π

2
.

Thus the angle excess theorem agrees with our picture.
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From the angle excess theorem, we see that if K > 0, then A+B+C > π
which gives us fat triangles. If K < 0, then A + B + C < π which gives us
skinny triangles.

 

Proof of the Gauss-Bonnet Theorem. By Theorem 6.8, we can triangulate M
with geodesic edges. Let T1, T2, . . . , Tn be the triangles in the triangulation.
Then note that the number of faces is F = n. For each i = 1, 2, . . . , n, let
Ai, Bi, and Ci be the angles for each geodesic triangle Ti. Then the Angle
Excess Theorem gives us∫∫

M

KdS =
n∑
i=1

∫∫
Ti

KdS =
n∑
i=1

(Ai+Bi+Ci−π) =
n∑
i=1

(Ai+Bi+Ci)−nπ.

Notice that since the triangles must cover M entirely, the sum of all the
angles put together must equal 2π times the number of vertices V . See the
figure below. Therefore

∑n
i=1(Ai +Bi + Ci) = 2πV , and so we have∫∫

M

KdS = 2πV − nπ = 2πV − πF

Now let’s count how many edges there have to be. We might expect that for
every face, there are three edges: E = 3F . However recognize that we are
double counting the edges, because each edge shares the face of two triangles.
See the figure below. Therefore the number of edges is really E = 3

2
F . Thus∫∫

M

KdS = 2πV − πF = 2π

(
V + F − 3

2
F

)
= 2π(V + F −E) = 2πχ(M).
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Proof of the Angle Excess Theorem.

In this section we will prove the angle excess theorem. The techniques in-
volved in this proof also appear in graduate differential geometry courses,
so if you understand this proof, then you will be well prepared for the more
advanced stuff.

Geodesic Polar Coordinates

First we need to introduce a good choice of coordinates made out of geodesics.
Consider a point p in a surface M and its tangent space TpM . TpM is a two-
dimensional vector space based at p. Let {e1, e2} be an orthonormal basis for
TpM consider an angle θ traveling counterclock wise so that the right hand
rule points in the direction normal to the surface. See the figure below. For
ε > 0 let Uε = {(r, θ) | 0 < r < ε, 0 < θ < 2π} and define x : Uε → M by
x(r, θ) = point in M reached by traveling along the geodesic for a length of
r starting at p and in the direction θ.
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For reasons related to Lie group theory, x is known as the exponential
map. r and θ are called geodesic polar coordinates. Similar to Proposition
6.7, we have the following

Proposition 6.16. For ε sufficiently small, x : Uε → M is a proper coordi-
nate patch.

We will always assume that ε > 0 is small enough so that x : Uε →M is a
proper coordinate patch. In such a patch, the curves r 7→ (r, θ0) for a constant
θ0 are called radial geodesics emanating from p. The curves θ 7→ (r0, θ) for a
constant r0 are called geodesic circles based at p.

Consider the components of the induced metric in this coordinate patch.
Since are coordinates are r and θ, our components will be grr, grθ, and gθθ.
grr is easy to calculate. Recall xr = ∂x

∂r
. Then

grr = 〈xr,xr〉 = |xr|2 = 1. (6.1)

The last equality follows from the fact that the coordinate r measures arc-
length. This is from the definition of the exponential map x. The following
explains the utility of geodesic polar coordinates.

Lemma 6.17 (Gauss Lemma). In geodesic polar coordinates, we always have
grθ = 0, i.e. they form an orthogonal coordinate system.
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Proof. Consider a point p ∈ M and the exponential map x : Uε → M based
at p. Let q ∈ Uε. We want to show grθ(q) = 〈xr,xθ〉(q) = 0. Let σ(r)
be the unit speed geodesic from p to q. By definition of the exponential
map xrr corresponds to σ′′. Smoothness of the exponential map implies
that xθ(p) = 0. Therefore 〈xr,xθ〉(p) = 0. Thus it suffices to show that
〈xr,xθ〉

(
σ(r)

)
is independent of r.

Since σ′′ ⊥M by definition of geodesics, we have 〈xrr,xθ〉 = 0. So by the
product rule, we obtain the following

∂

∂r
〈xr,xθ〉 = 〈xrr,xθ〉+ 〈xr,xθr〉 = 0 + 〈xr,xθr〉.

Combining this with

∂

∂θ
|xr|2 =

∂

∂θ
〈xr,xr〉 = 〈xrθ,xr〉+ 〈xr,xrθ〉 = 2〈xr,xrθ〉,

we have
∂

∂r
〈xr,xθ〉 =

1

2

∂

∂θ
|xr|2 = 0.

The last equality follows from Proposition 6.2.

Gaussian Curvature in Geodesic Polar Coordinates

Consider a point p in a surface M and introduce geodesic polar coordi-
nates (r, θ) around p via the exponential map x : Uε → M . We want to
compute the Gaussian curvature K of M in terms of these coordinates. First
some notation.

ds2 =
∑
i,j

gijdx
idxj = grrdr

2 + 2grθdrdθ + gθθdθ
2.

The Gauss Lemma tells us that grθ = 0. Also, from Equation 6.1 we know
that grr = 1. Therefore, if we let f =

√
gθθ, then the metric in geodesic polar

coordinates is simply
ds2 = dr2 + f 2dθ2. (6.2)

Since geodesic polar coordinates are intrinsically defined (i.e. we did
not use the coordinates from R3 to define them), we should calculate the
Gaussian curvature via intrinsic quantities. Recall Gauss’ Theorem Egregium
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(Theorem 5.17) says that the Gaussian curvature can be computed in terms
of the gij’s. In the proof of that theorem we found that

K =
2∑
l=1

g2lR
l
121

g
(6.3)

In geodesic polar coordinates, we know from equation (6.2) that the com-
ponents gij are simply

grr = 1, grθ = 0, gθθ = f 2 . (6.4)

SInce this is an orthogonal coordinate system, one can apply Equation 5.26
to obtain (exercise!)

K = − 1

f

∂2f

∂r2
. (6.5)

Finally we are able to prove:

Theorem 6.18 (Angle Excess Theorem). Let T be a geodesic triangle with
angles A, B, and C. Then

A+B + C = π +

∫∫
T

KdS.

Proof. We will break the proof up into three steps.

Step 1: Set up

Let’s construct a geodesic triangle T with vertex p in a surface S with
angles A, B, and C. We use geodesic polar coordinates (r, θ) to parameterize
T . Let’s say the two edges of T emanating from p correspond to values θ = θ0

and θ = θ1. The other edge we will call σ. That is, σ is the edge opposite
that of p. In the figure below, the green curve is a radial geodesic emanating
from p with angle θ where θ0 ≤ θ ≤ θ1. φ is the angle between these radial
geodesics and σ. Therefore φ is a function θ.
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Step 2: Showing dφ
dθ

= −∂f
∂r

We parameterize σ with respect to arclength,

σ(s) = x
(
r(s), θ(s)

)
. (6.6)

We use ′ = d
ds

to denote differentiation with respect to arclength. Then
σ′ = r′xr + θ′xθ. So since the parameterization is with respect to arclength
and our metric is given by ds2 = dr2 + f 2dθ2, we have

1 = 〈σ′, σ′〉 = 〈r′xr + θ′xθ, r
′xr + θ′xθ〉 = (r′)2 + (θ′)2f 2. (6.7)

Since σ′ and xr are unit vectors, we have 〈σ′,xr〉 = cosφ. Therefore

cosφ = 〈r′xr + θ′xθ,xr〉 = r′〈xr,xr〉+ θ′〈xθ,xr〉 = r′. (6.8)

The last equality follows from the Gauss Lemma (Lemma 6.17). Plugging
equation (6.8) into equation (6.7) yields

1 = cos2 φ+ (θ′)2f 2 (6.9)
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Hence
sinφ = θ′f. (6.10)

Therefore we have an expression for θ′ = dθ/ds, so in order to find dθ/dφ all
we need is an expression for φ′ = dφ/ds. Differentiating cosφ = 〈σ′,xr〉, we
get

−φ′ sinφ =
d

ds
〈σ′,xr〉 = 〈σ′′,xr〉+ 〈σ′,x′r〉 = 〈σ′,x′r〉. (6.11)

The second equality follows because σ is a geodesic. An application of the
chain rule gives

−φ′ sinφ = 〈σ′,xrrr′ + xrθθ
′〉 = 〈σ′,xrθθ′〉 = θ′〈σ′,xrθ〉. (6.12)

The second equality follows since xrr = 0 because we’re using geodesic polar
coordinates. This gives us the following expression for dθ/dφ

dφ

dθ
=
φ′

θ′
= −〈σ

′,xrθ〉
sinφ

= −〈σ
′,xrθ〉
θ′f

(6.13)

We used equation (6.10) in the last equality. Now we want to simplify
〈σ′,xrθ〉. We have

〈σ′,xrθ〉 = 〈r′xr + θ′xθ,xrθ〉 = r′〈xr,xrθ〉+ θ′〈xθ,xrθ〉. (6.14)

Let’s evaluate these two terms separately.

〈xr,xrθ〉 =
1

2

∂

∂θ
〈xr,xr〉 =

1

2

∂

∂θ
(1) = 0. (6.15)

〈xθ,xrθ〉 =
1

2

∂

∂r
〈xθ,xθ〉 =

1

2

∂

∂r
(f 2) = f

∂f

∂r
(6.16)

Plugging these into equation (6.14), we get

〈σ′,xrθ〉 = θ′f
∂f

∂r
. (6.17)

Finally, plugging this into equation (6.13), we obtain

dφ

dθ
= −∂f

∂r
. (6.18)

This completes step 2.
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Step 3: Evaluating
∫∫

T
KdS

Let’s put all the pieces together. In the section before this, we calculated
the Gaussian curvature in geodesic polar coordinates K = − 1

f
∂2f
∂r2

. The
area element in geodesic polar coordinates is dS =

√
gdrdθ = fdrdθ since

g = det[gij] = f 2. Therefore∫∫
T

KdS =

∫∫
T

(
− 1

f

∂2f

∂r2

)
fdrdθ = −

∫∫
T

∂2f

∂r2
drdθ. (6.19)

Putting bounds on our integral, we get∫∫
T

KdS = −
∫ θ1

θ0

∫ r(θ)

0

∂2f

∂r2
drdθ = −

∫ θ1

θ0

(
∂f

∂r
− 1

)
dθ. (6.20)

Note that we used ∂f
∂r

∣∣
r=0

= 1 (convince yourself why this is true). Rearrang-
ing and using dφ/dθ = −∂f/∂r gives∫∫

T

KdS =

∫ θ1

θ0

dθ −
∫ θ1

θ0

∂f

∂r
dθ = A+

∫ θ1

θ0

dφ

dθ
dθ. (6.21)

From the figure we see that∫∫
T

KdS = A+

∫ φ(θ1)

φ(θ0)

dφ = A+ φ(θ1)− φ(θ0) = A+ C − (π −B) (6.22)

Thus ∫∫
T

KdS = A+B + C − π. (6.23)
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Chapter 6 Exercises

1. Let s→ σ(s) be a unit speed curve which lies on a sphere of radius R.

(a) Show that the normal curvature κn of σ (with respect to the out-
ward normal) is equal to − 1

R
. (Hint: Use the geometric interpre-

tation of the second fundamental form L.)

(b) Using the result of Exercise 2.7 on p. 32, show that if σ has con-
stant geodesic curvature, κg = const., then σ is a circle (or part
of a circle).

(c) Show that any geodesic on a sphere is a great circle (or part of a
great circle). Hint: Use part (b).

2. Let M be the surface of revolution obtained by rotating the curve
σ(t) = (r(t), 0, z(t)) about the z-axis, as decribed on pp 52-53. Assume
that σ is a unit speed curve.

(a) Show that, with respect to the coordinates (t, θ), the metric com-
ponents are given by: gtt = 1, gtθ = 0, and gθθ = r2.

(b) Consider the curve τ → γ(τ) expressed in terms of coordinates as,
γ(τ) = x(t(τ), θ(τ)). Compute the Christoffel symbols Γkij, i.e.,
Γttt, Γttθ = Γtθt, etc. to obtain the geodesic equations,

t′′ − rṙ(θ′)2 = 0 (6.24)

θ′′ + 2
ṙ

r
t′θ′ = 0 , (6.25)

where ′ = d/dτ and · = d/dt.

(c) Suppose γ is a unit speed geodesic. Show by differentiation, and
the second geodesic equation, that the quantity r2θ′ is constant
along γ. Show that this implies 〈γ′,xθ〉 = const along γ. (Remark:
Using that γ′ is a unit vector, this, in turn, implies that r cosφ =
const along γ, where φ is the angle between γ and the latitudinal

circles. This is known as Clairaut’s relation).
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3. Let p be the north pole of the sphere of radius R, S2
R, and let Cr(p) be

the geodesic circle of radius r (r < R) centered at p.

(a) Show by elementary geometry (see the figure) that Cr(p) is the
circle of latitude at co-latitude θ = r

R
. Show that the length of

Cr(p) is given by,

L(Cr(p)) = 2πR sin
( r
R

)
.

(b) Using the Maclaurin series of the sine to expand sin
(
r
R

)
in powers

of r
R

, show that,

L(Cr(p)) = 2πr − π

3

1

R2
r3 + higher order terms in r

Thus, the Gaussian curvature of S2
R, K = 1

R2 , measures the devi-
ation from the Euclidean length formula.

4. Let M be the torus of revolution discussed in Exercise 5.6, p. 124. Show
by direct computation that

∫∫
M
K dS = 0, i.e., the average Gaussian

curvature is zero. (This, of course, is required by the Gauss-Bonnet
theorem.)

5. For the surface M pictured below, what is the value of the integral∫∫
M
K dS ?
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